Timezone: »
Finding the best way to schedule operations in a computation graph is a classical NP-hard problem which is central to compiler optimization. However, evaluating the goodness of a schedule on the target hardware can be very time-consuming. Traditional approaches as well as previous machine learning ones typically optimize proxy metrics, which are fast to evaluate but can lead to bad schedules when tested on the target hardware. In this work, we propose a new approach to scheduling by sampling proportionally to the proxy metric using a novel GFlowNet method. We introduce a technique to control the trade-off between diversity and goodness of the proposed schedules at inference time and demonstrate empirically that the pure optimization baselines can lead to subpar performance with respect to our approach when tested on a target model. Furthermore, we show that conditioning the GFlowNet on the computation graph enables generalization to unseen scheduling problems for both synthetic and real-world compiler datasets.
Author Information
David Zhang (University of Amsterdam)
Corrado Rainone (Qualcomm Inc, QualComm)
Markus Peschl (Qualcomm Inc, QualComm)
Roberto Bondesan (Qualcomm AI Research)
More from the Same Authors
-
2021 : Scaling Up Machine Learning For Quantum Field Theory with Equivariant Continuous Flows »
Pim de Haan · Roberto Bondesan -
2022 : Unlocking Slot Attention by Changing Optimal Transport Costs »
Yan Zhang · David Zhang · Simon Lacoste-Julien · Gertjan Burghouts · Cees Snoek -
2022 : Self-Guided Diffusion Model »
TAO HU · David Zhang · Yuki Asano · Gertjan Burghouts · Cees Snoek -
2022 : Unlocking Slot Attention by Changing Optimal Transport Costs »
Yan Zhang · David Zhang · Simon Lacoste-Julien · Gertjan Burghouts · Cees Snoek -
2022 : Unlocking Slot Attention by Changing Optimal Transport Costs »
Yan Zhang · David Zhang · Simon Lacoste-Julien · Gertjan Burghouts · Cees Snoek -
2022 Poster: Neural Topological Ordering for Computation Graphs »
Mukul Gagrani · Corrado Rainone · Yang Yang · Harris Teague · Wonseok Jeon · Roberto Bondesan · Herke van Hoof · Christopher Lott · Weiliang Zeng · Piero Zappi