Timezone: »
Causal effect estimation is important for numerous tasks in the natural and social sciences. However, identifying effects is impossible from observational data without making strong, often untestable assumptions which might not be applicable to real-world data. We consider algorithms for the partial identification problem, bounding the effects of multivariate, continuous treatments over multiple possible causal models when unmeasured confounding makes identification impossible. Even in the partial identification setting, most current work is only applicable in the discrete setting. We propose a framework which is applicable to continuous high-dimensional data. The observable evidence is matched to the implications of constraints encoded in a causal model by norm-based criteria. In particular, for the IV setting, we present ways by which such constrained optimization problems can be parameterized without likelihood functions for the causal or the observed data model, reducing the computational and statistical complexity of the task.
Author Information
Kirtan Padh (Helmholtz AI Munich)
Jakob Zeitler (UCL)
David Watson (University College London)
Matt Kusner (University College London)
Ricardo Silva (University College London)
Niki Kilbertus (TUM & Helmholtz AI)
More from the Same Authors
-
2022 : Discovering ordinary differential equations that govern time-series »
Sören Becker · Michal Klein · Alexander Neitz · Giambattista Parascandolo · Niki Kilbertus -
2022 : Pragmatic Fairness: Optimizing Policies with Outcome Disparity Control »
Limor Gultchin · Siyuan Guo · Alan Malek · Silvia Chiappa · Ricardo Silva -
2022 : Modeling Single-Cell Dynamics Using Unbalanced Parameterized Monge Maps »
Luca Eyring · Dominik Klein · Giovanni Palla · Sören Becker · Philipp Weiler · Niki Kilbertus · Fabian Theis -
2022 : Evaluating the Impact of Geometric and Statistical Skews on Out-Of-Distribution Generalization Performance »
Aengus Lynch · Jean Kaddour · Ricardo Silva -
2022 : Evaluating the Impact of Geometric and Statistical Skews on Out-Of-Distribution Generalization Performance »
Aengus Lynch · Jean Kaddour · Ricardo Silva -
2022 Workshop: A causal view on dynamical systems »
Sören Becker · Alexis Bellot · Cecilia Casolo · Niki Kilbertus · Sara Magliacane · Yuyang (Bernie) Wang -
2022 Workshop: Algorithmic Fairness through the Lens of Causality and Privacy »
Awa Dieng · Miriam Rateike · Golnoosh Farnadi · Ferdinando Fioretto · Matt Kusner · Jessica Schrouff -
2022 Poster: Sparsity in Continuous-Depth Neural Networks »
Hananeh Aliee · Till Richter · Mikhail Solonin · Ignacio Ibarra · Fabian Theis · Niki Kilbertus -
2022 Poster: Local Latent Space Bayesian Optimization over Structured Inputs »
Natalie Maus · Haydn Jones · Juston Moore · Matt Kusner · John Bradshaw · Jacob Gardner -
2022 Poster: Predicting Cellular Responses to Novel Drug Perturbations at a Single-Cell Resolution »
Leon Hetzel · Simon Boehm · Niki Kilbertus · Stephan Günnemann · mohammad lotfollahi · Fabian Theis -
2022 Poster: When Do Flat Minima Optimizers Work? »
Jean Kaddour · Linqing Liu · Ricardo Silva · Matt Kusner -
2021 : Ricardo Silva - The Road to Causal Programming »
Ricardo Silva -
2021 Workshop: Machine Learning Meets Econometrics (MLECON) »
David Bruns-Smith · Arthur Gretton · Limor Gultchin · Niki Kilbertus · Krikamol Muandet · Evan Munro · Angela Zhou -
2021 Poster: Causal Effect Inference for Structured Treatments »
Jean Kaddour · Yuchen Zhu · Qi Liu · Matt Kusner · Ricardo Silva -
2021 Poster: On Component Interactions in Two-Stage Recommender Systems »
Jiri Hron · Karl Krauth · Michael Jordan · Niki Kilbertus -
2020 Workshop: Consequential Decisions in Dynamic Environments »
Niki Kilbertus · Angela Zhou · Ashia Wilson · John Miller · Lily Hu · Lydia T. Liu · Nathan Kallus · Shira Mitchell -
2020 Workshop: Machine Learning for Molecules »
José Miguel Hernández-Lobato · Matt Kusner · Brooks Paige · Marwin Segler · Jennifer Wei -
2020 : Invited Talk: On Prediction, Action and Interference »
Ricardo Silva -
2020 Poster: A Class of Algorithms for General Instrumental Variable Models »
Niki Kilbertus · Matt Kusner · Ricardo Silva -
2020 Poster: Barking up the right tree: an approach to search over molecule synthesis DAGs »
John Bradshaw · Brooks Paige · Matt Kusner · Marwin Segler · José Miguel Hernández-Lobato -
2020 Spotlight: Barking up the right tree: an approach to search over molecule synthesis DAGs »
John Bradshaw · Brooks Paige · Matt Kusner · Marwin Segler · José Miguel Hernández-Lobato -
2019 Poster: A Model to Search for Synthesizable Molecules »
John Bradshaw · Brooks Paige · Matt Kusner · Marwin Segler · José Miguel Hernández-Lobato -
2018 Workshop: Privacy Preserving Machine Learning »
Adria Gascon · Aurélien Bellet · Niki Kilbertus · Olga Ohrimenko · Mariana Raykova · Adrian Weller -
2018 Poster: Bayesian Semi-supervised Learning with Graph Gaussian Processes »
Yin Cheng Ng · Nicolò Colombo · Ricardo Silva -
2017 Workshop: From 'What If?' To 'What Next?' : Causal Inference and Machine Learning for Intelligent Decision Making »
Ricardo Silva · Panagiotis Toulis · John Shawe-Taylor · Alexander Volfovsky · Thorsten Joachims · Lihong Li · Nathan Kallus · Adith Swaminathan -
2017 Poster: Avoiding Discrimination through Causal Reasoning »
Niki Kilbertus · Mateo Rojas Carulla · Giambattista Parascandolo · Moritz Hardt · Dominik Janzing · Bernhard Schölkopf -
2017 Poster: Counterfactual Fairness »
Matt Kusner · Joshua Loftus · Chris Russell · Ricardo Silva -
2017 Oral: Counterfactual Fairness »
Matt Kusner · Joshua Loftus · Chris Russell · Ricardo Silva -
2017 Poster: Tomography of the London Underground: a Scalable Model for Origin-Destination Data »
Nicolò Colombo · Ricardo Silva · Soong Moon Kang -
2017 Poster: When Worlds Collide: Integrating Different Counterfactual Assumptions in Fairness »
Chris Russell · Matt Kusner · Joshua Loftus · Ricardo Silva -
2016 Workshop: "What If?" Inference and Learning of Hypothetical and Counterfactual Interventions in Complex Systems »
Ricardo Silva · John Shawe-Taylor · Adith Swaminathan · Thorsten Joachims -
2016 Poster: Observational-Interventional Priors for Dose-Response Learning »
Ricardo Silva -
2016 Poster: Scaling Factorial Hidden Markov Models: Stochastic Variational Inference without Messages »
Yin Cheng Ng · Pawel M Chilinski · Ricardo Silva -
2014 Poster: Causal Inference through a Witness Protection Program »
Ricardo Silva · Robin Evans -
2013 Poster: Flexible sampling of discrete data correlations without the marginal distributions »
Alfredo Kalaitzis · Ricardo Silva -
2011 Poster: Thinning Measurement Models and Questionnaire Design »
Ricardo Silva -
2007 Poster: Hidden Common Cause Relations in Relational Learning »
Ricardo Silva · Wei Chu · Zoubin Ghahramani -
2007 Spotlight: Hidden Common Cause Relations in Relational Learning »
Ricardo Silva · Wei Chu · Zoubin Ghahramani