Timezone: »
Discovering causal relationships between different variables from time series data has been a long-standing challenge for many domains. For example, in stock markets, the announcement of acquisitions from leading companies may have immediate effects on stock prices and increased uncertainty of the future market due to this past action. This requires the model to take non-linear relationships, instantaneous effects and the past-action dependent uncertainty into account. We name the latter as history-dependent noise. However, previous works do not offer a solution addressing all these problems together. In this paper, we propose a structural equation model, called Rhino, which combines vector auto-regression, deep learning and variational inference to model non-linear relationships with instantaneous effects and flexible history-dependent noise. Theoretically, we prove the structural identifiability for a generalization of Rhino. Our empirical results from extensive synthetic experiments and a real-world benchmark demonstrate better discovery performance compared to relevant baselines, with ablation studies revealing its robustness when the Rhino is misspecified.
Author Information
Wenbo Gong (Microsoft)
Joel Jennings (Microsoft Research)
Cheng Zhang (Microsoft Research, Cambridge, UK)
Cheng Zhang is a principal researcher at Microsoft Research Cambridge, UK. She leads the Data Efficient Decision Making (Project Azua) team in Microsoft. Before joining Microsoft, she was with the statistical machine learning group of Disney Research Pittsburgh, located at Carnegie Mellon University. She received her Ph.D. from the KTH Royal Institute of Technology. She is interested in advancing machine learning methods, including variational inference, deep generative models, and sequential decision-making under uncertainty; and adapting machine learning to social impactful applications such as education and healthcare. She co-organized the Symposium on Advances in Approximate Bayesian Inference from 2017 to 2019.
Nick Pawlowski (Microsoft Research)
More from the Same Authors
-
2022 : A Causal AI Suite for Decision-Making »
Emre Kiciman · Eleanor Dillon · Darren Edge · Adam Foster · Joel Jennings · Chao Ma · Robert Ness · Nick Pawlowski · Amit Sharma · Cheng Zhang -
2022 : Deep End-to-end Causal Inference »
Tomas Geffner · Javier Antorán · Adam Foster · Wenbo Gong · Chao Ma · Emre Kiciman · Amit Sharma · Angus Lamb · Martin Kukla · Nick Pawlowski · Miltiadis Allamanis · Cheng Zhang -
2022 : Causal Reasoning in the Presence of Latent Confounders via Neural ADMG Learning »
Matthew Ashman · Chao Ma · Agrin Hilmkil · Joel Jennings · Cheng Zhang -
2022 : Fifteen-minute Competition Overview Video »
Jack Wang · Joel Jennings · Cheng Zhang · Wenbo Gong · Simon Woodhead · Nick Pawlowski · Digory Smith · Craig Barton -
2022 Competition: Causal Insights for Learning Paths in Education »
Wenbo Gong · Digory Smith · Jack Wang · Simon Woodhead · Nick Pawlowski · Joel Jennings · Cheng Zhang · Craig Barton -
2022 : Overview of the competition »
Simon Woodhead · Wenbo Gong -
2022 : Closing Remarks »
Cheng Zhang · Mihaela van der Schaar -
2022 : Panel Discussion »
Cheng Zhang · Mihaela van der Schaar · Ilya Shpitser · Aapo Hyvarinen · Yoshua Bengio · Bernhard Schölkopf -
2022 Workshop: NeurIPS 2022 Workshop on Score-Based Methods »
Yingzhen Li · Yang Song · Valentin De Bortoli · Francois-Xavier Briol · Wenbo Gong · Alexia Jolicoeur-Martineau · Arash Vahdat -
2022 Workshop: Causal Machine Learning for Real-World Impact »
Nick Pawlowski · Jeroen Berrevoets · Caroline Uhler · Kun Zhang · Mihaela van der Schaar · Cheng Zhang -
2022 : Opening Remarks »
Cheng Zhang · Mihaela van der Schaar -
2022 Poster: Simultaneous Missing Value Imputation and Structure Learning with Groups »
Pablo Morales-Alvarez · Wenbo Gong · Angus Lamb · Simon Woodhead · Simon Peyton Jones · Nick Pawlowski · Miltiadis Allamanis · Cheng Zhang -
2021 Workshop: Deep Generative Models and Downstream Applications »
José Miguel Hernández-Lobato · Yingzhen Li · Yichuan Zhang · Cheng Zhang · Austin Tripp · Weiwei Pan · Oren Rippel -
2020 Poster: VAEM: a Deep Generative Model for Heterogeneous Mixed Type Data »
Chao Ma · Sebastian Tschiatschek · Richard Turner · José Miguel Hernández-Lobato · Cheng Zhang -
2020 Poster: Deep Structural Causal Models for Tractable Counterfactual Inference »
Nick Pawlowski · Daniel Coelho de Castro · Ben Glocker -
2020 Poster: A Causal View on Robustness of Neural Networks »
Cheng Zhang · Kun Zhang · Yingzhen Li -
2020 Poster: How do fair decisions fare in long-term qualification? »
Xueru Zhang · Ruibo Tu · Yang Liu · Mingyan Liu · Hedvig Kjellstrom · Kun Zhang · Cheng Zhang -
2020 Tutorial: (Track1) Advances in Approximate Inference Q&A »
Yingzhen Li · Cheng Zhang -
2020 Poster: Stochastic Segmentation Networks: Modelling Spatially Correlated Aleatoric Uncertainty »
Miguel Monteiro · Loic Le Folgoc · Daniel Coelho de Castro · Nick Pawlowski · Bernardo Marques · Konstantinos Kamnitsas · Mark van der Wilk · Ben Glocker -
2020 Tutorial: (Track1) Advances in Approximate Inference »
Yingzhen Li · Cheng Zhang -
2019 Poster: Generalization in Reinforcement Learning with Selective Noise Injection and Information Bottleneck »
Maximilian Igl · Kamil Ciosek · Yingzhen Li · Sebastian Tschiatschek · Cheng Zhang · Sam Devlin · Katja Hofmann -
2019 Poster: Neuropathic Pain Diagnosis Simulator for Causal Discovery Algorithm Evaluation »
Ruibo Tu · Kun Zhang · Bo Bertilson · Hedvig Kjellstrom · Cheng Zhang -
2019 Poster: Icebreaker: Element-wise Efficient Information Acquisition with a Bayesian Deep Latent Gaussian Model »
Wenbo Gong · Sebastian Tschiatschek · Sebastian Nowozin · Richard Turner · José Miguel Hernández-Lobato · Cheng Zhang