Timezone: »
Growing work in algorithmic decision support proposes methods for combining predictive models with human judgment to improve decision quality. A challenge that arises in this setting is predicting the risk of a decision-relevant target outcome under multiple candidate actions. While counterfactual prediction techniques have been developed for these tasks, current approaches do not account for measurement error in observed labels. This is a key limitation because in many domains, observed labels (e.g., medical diagnoses, defendant re-arrest) serve as a proxy for the target outcome of interest (e.g., biological medical outcomes, recidivism). We develop a method for counterfactual prediction of target outcomes observed under treatment-conditional outcome measurement error (TC-OME). Our method minimizes risk with respect to target potential outcomes given access to observational data and estimates of measurement error parameters. We also develop a method for estimating error parameters in cases where these are unknown in advance. Through a synthetic evaluation, we show that our approach achieves performance parity with an oracle model when measurement error parameters are known and retains performance given moderate bias in error parameter estimates.
Author Information
Luke Guerdan (Carnegie Mellon University)
Amanda Coston (Carnegie Mellon University)
Kenneth Holstein (Carnegie Mellon University)
Steven Wu (Carnegie Mellon University)
More from the Same Authors
-
2021 : What Would the Expert do()?: Causal Imitation Learning »
Gokul Swamy · Sanjiban Choudhury · James Bagnell · Steven Wu -
2021 : Iterative Methods for Private Synthetic Data: Unifying Framework and New Methods »
Terrance Liu · Giuseppe Vietri · Steven Wu -
2021 : What Would the Expert do()?: Causal Imitation Learning »
Gokul Swamy · Sanjiban Choudhury · James Bagnell · Steven Wu -
2021 : What Would the Expert $do(\cdot)$?: Causal Imitation Learning »
Gokul Swamy · Sanjiban Choudhury · James Bagnell · Steven Wu -
2021 : Bayesian Persuasion for Algorithmic Recourse »
Keegan Harris · Valerie Chen · Joon Sik Kim · Ameet Talwalkar · Hoda Heidari · Steven Wu -
2021 : What Would the Expert $do(\cdot)$?: Causal Imitation Learning »
Gokul Swamy · Sanjiban Choudhury · James Bagnell · Steven Wu -
2021 : Information Discrepancy in Strategic Learning »
Yahav Bechavod · Chara Podimata · Steven Wu · Juba Ziani -
2021 : Gaming Helps! Learning from Strategic Interactions in Natural Dynamics »
Yahav Bechavod · Katrina Ligett · Steven Wu · Juba Ziani -
2021 : Bayesian Persuasion for Algorithmic Recourse »
Keegan Harris · Valerie Chen · Joon Kim · Ameet S Talwalkar · Hoda Heidari · Steven Wu -
2021 : What Would the Expert $do(\cdot)$?: Causal Imitation Learning »
Gokul Swamy · Sanjiban Choudhury · James Bagnell · Steven Wu -
2021 : What Would the Expert $do(\cdot)$?: Causal Imitation Learning »
Gokul Swamy · Sanjiban Choudhury · James Bagnell · Steven Wu -
2021 : What Would the Expert $do(\cdot)$?: Causal Imitation Learning »
Gokul Swamy · Sanjiban Choudhury · James Bagnell · Steven Wu -
2021 : Information Discrepancy in Strategic Learning »
Yahav Bechavod · Chara Podimata · Steven Wu · Juba Ziani -
2021 : Gaming Helps! Learning from Strategic Interactions in Natural Dynamics »
Yahav Bechavod · Katrina Ligett · Steven Wu · Juba Ziani -
2021 : Bayesian Persuasion for Algorithmic Recourse »
Keegan Harris · Valerie Chen · Joon Kim · Ameet S Talwalkar · Hoda Heidari · Steven Wu -
2022 : Strategy-Aware Contextual Bandits »
Keegan Harris · Chara Podimata · Steven Wu -
2022 : Counterfactual Risk Assessments under Unmeasured Confounding »
Amanda Coston · Edward Kennedy · Ashesh Rambachan -
2022 : Choosing Public Datasets for Private Machine Learning via Gradient Subspace Distance »
Xin Gu · Gautam Kamath · Steven Wu -
2022 : Strategy-Aware Contextual Bandits »
Keegan Harris · Chara Podimata · Steven Wu -
2022 : Strategy-Aware Contextual Bandits »
Keegan Harris · Chara Podimata · Steven Wu -
2022 : Differentially Private Gradient Boosting on Linear Learners for Tabular Data »
Saeyoung Rho · Shuai Tang · Sergul Aydore · Michael Kearns · Aaron Roth · Yu-Xiang Wang · Steven Wu · Cedric Archambeau -
2022 : Causality Roundtable »
Dhanya Sridhar · Amanda Coston -
2022 Poster: On Privacy and Personalization in Cross-Silo Federated Learning »
Ken Liu · Shengyuan Hu · Steven Wu · Virginia Smith -
2022 Poster: Brownian Noise Reduction: Maximizing Privacy Subject to Accuracy Constraints »
Justin Whitehouse · Aaditya Ramdas · Steven Wu · Ryan Rogers -
2022 Poster: Incentivizing Combinatorial Bandit Exploration »
Xinyan Hu · Dung Ngo · Aleksandrs Slivkins · Steven Wu -
2022 Poster: Sequence Model Imitation Learning with Unobserved Contexts »
Gokul Swamy · Sanjiban Choudhury · J. Bagnell · Steven Wu -
2022 Poster: Private Synthetic Data for Multitask Learning and Marginal Queries »
Giuseppe Vietri · Cedric Archambeau · Sergul Aydore · William Brown · Michael Kearns · Aaron Roth · Ankit Siva · Shuai Tang · Steven Wu -
2022 Poster: Minimax Optimal Online Imitation Learning via Replay Estimation »
Gokul Swamy · Nived Rajaraman · Matt Peng · Sanjiban Choudhury · J. Bagnell · Steven Wu · Jiantao Jiao · Kannan Ramchandran -
2022 Poster: Bayesian Persuasion for Algorithmic Recourse »
Keegan Harris · Valerie Chen · Joon Kim · Ameet Talwalkar · Hoda Heidari · Steven Wu -
2021 : Leveraging strategic interactions for causal discovery »
Steven Wu -
2021 : Bayesian Persuasion for Algorithmic Recourse »
Keegan Harris · Valerie Chen · Joon Sik Kim · Ameet Talwalkar · Hoda Heidari · Steven Wu -
2021 : What Would the Expert do()?: Causal Imitation Learning »
Gokul Swamy · Sanjiban Choudhury · James Bagnell · Steven Wu -
2021 Poster: Iterative Methods for Private Synthetic Data: Unifying Framework and New Methods »
Terrance Liu · Giuseppe Vietri · Steven Wu -
2021 Poster: Stateful Strategic Regression »
Keegan Harris · Hoda Heidari · Steven Wu -
2020 : Discussion Panel with Amanda Coston »
Amanda Coston · Elaine Nsoesie · Catherine Nakalembe · Santiago Saavedra · Xiaoxiang Zhu · Ernest Mwebaze -
2020 Poster: Counterfactual Predictions under Runtime Confounding »
Amanda Coston · Edward Kennedy · Alexandra Chouldechova -
2020 Poster: Metric-Free Individual Fairness in Online Learning »
Yahav Bechavod · Christopher Jung · Steven Wu -
2020 Poster: Understanding Gradient Clipping in Private SGD: A Geometric Perspective »
Xiangyi Chen · Steven Wu · Mingyi Hong -
2020 Poster: Distributed Training with Heterogeneous Data: Bridging Median- and Mean-Based Algorithms »
Xiangyi Chen · Tiancong Chen · Haoran Sun · Steven Wu · Mingyi Hong -
2020 Spotlight: Understanding Gradient Clipping in Private SGD: A Geometric Perspective »
Xiangyi Chen · Steven Wu · Mingyi Hong -
2020 Oral: Metric-Free Individual Fairness in Online Learning »
Yahav Bechavod · Christopher Jung · Steven Wu -
2020 Session: Orals & Spotlights Track 20: Social/Adversarial Learning »
Steven Wu · Miro Dudik -
2019 : Coffee break, posters, and 1-on-1 discussions »
Yangyi Lu · Daniel Chen · Hongseok Namkoong · Marie Charpignon · Maja Rudolph · Amanda Coston · Julius von Kügelgen · Niranjani Prasad · Paramveer Dhillon · Yunzong Xu · Yixin Wang · Alexander Markham · David Rohde · Rahul Singh · Zichen Zhang · Negar Hassanpour · Ankit Sharma · Ciarán Lee · Jean Pouget-Abadie · Jesse Krijthe · Divyat Mahajan · Nan Rosemary Ke · Peter Wirnsberger · Vira Semenova · Dmytro Mykhaylov · Dennis Shen · Kenta Takatsu · Liyang Sun · Jeremy Yang · Alexander Franks · Pak Kan Wong · Tauhid Zaman · Shira Mitchell · min kyoung kang · Qi Yang -
2019 : Poster Spotlights »
Hongseok Namkoong · Marie Charpignon · Maja Rudolph · Amanda Coston · Yuta Saito · Paramveer Dhillon · Alexander Markham -
2019 Workshop: Machine Learning for the Developing World (ML4D): Challenges and Risks »
Maria De-Arteaga · Amanda Coston · Tejumade Afonja -
2019 Poster: Equal Opportunity in Online Classification with Partial Feedback »
Yahav Bechavod · Katrina Ligett · Aaron Roth · Bo Waggoner · Steven Wu -
2019 Poster: Random Quadratic Forms with Dependence: Applications to Restricted Isometry and Beyond »
Arindam Banerjee · Qilong Gu · Vidyashankar Sivakumar · Steven Wu -
2019 Poster: Private Hypothesis Selection »
Mark Bun · Gautam Kamath · Thomas Steinke · Steven Wu -
2019 Poster: Locally Private Gaussian Estimation »
Matthew Joseph · Janardhan Kulkarni · Jieming Mao · Steven Wu -
2018 : Poster Session 1 (note there are numerous missing names here, all papers appear in all poster sessions) »
Akhilesh Gotmare · Kenneth Holstein · Jan Brabec · Michal Uricar · Kaleigh Clary · Cynthia Rudin · Sam Witty · Andrew Ross · Shayne O'Brien · Babak Esmaeili · Jessica Forde · Massimo Caccia · Ali Emami · Scott Jordan · Bronwyn Woods · D. Sculley · Rebekah Overdorf · Nicolas Le Roux · Peter Henderson · Brandon Yang · Tzu-Yu Liu · David Jensen · Niccolo Dalmasso · Weitang Liu · Paul Marc TRICHELAIR · Jun Ki Lee · Akanksha Atrey · Matt Groh · Yotam Hechtlinger · Emma Tosch -
2018 : Opportunities for machine learning research to support fairness in industry practice »
Kenneth Holstein -
2017 : Spotlights »
Antti Kangasrääsiö · Richard Everett · Yitao Liang · Yang Cai · Steven Wu · Vidya Muthukumar · Sven Schmit -
2017 Poster: Accuracy First: Selecting a Differential Privacy Level for Accuracy Constrained ERM »
Katrina Ligett · Seth Neel · Aaron Roth · Bo Waggoner · Steven Wu -
2016 Poster: Learning from Rational Behavior: Predicting Solutions to Unknown Linear Programs »
Shahin Jabbari · Ryan Rogers · Aaron Roth · Steven Wu