Timezone: »
We propose a framework for causal inference with panel data in the presence of network interference and unobserved confounding. Key to our approach is a novel latent factor model that takes into account network interference and generalizes the factor models typically used in panel data settings. We propose an estimator–the Network Synthetic Interventions estimator—and show that it consistently estimates the counterfactual outcomes for a unit under an arbitrary set of treatments, if certain observation patterns hold in the data. We corroborate our theoretical findings with simulations. In doing so, our framework extends the Synthetic Control and Synthetic Interventions methods to incorporate network interference.
Author Information
Sarah Cen (Massachusetts Institute of Technology)
PhD student at MIT EECS. Working with Prof. Devavrat Shah in Laboratory for Information and Decision Systems. Research on topics including causal inference and responsible ML. Have previously worked on self-driving cars, robotics, information networks, and multi-armed bandits.
Anish Agarwal (MIT)
Christina Yu (Cornell University)
Devavrat Shah (Massachusetts Institute of Technology)
Devavrat Shah is a professor of Electrical Engineering & Computer Science and Director of Statistics and Data Science at MIT. He received PhD in Computer Science from Stanford. He received Erlang Prize from Applied Probability Society of INFORMS in 2010 and NeuIPS best paper award in 2008.
More from the Same Authors
-
2021 Spotlight: Regulating algorithmic filtering on social media »
Sarah Cen · Devavrat Shah -
2021 : Regret, stability, and fairness in matching markets with bandit learners »
Sarah Cen · Devavrat Shah -
2021 : Causal Matrix Completion »
Anish Agarwal -
2021 : Regret, stability, and fairness in matching markets with bandit learners »
Sarah Cen · Devavrat Shah -
2022 : Matrix Estimation for Offline Evaluation in Reinforcement Learning with Low-Rank Structure »
Xumei Xi · Christina Yu · Yudong Chen -
2022 : On counterfactual inference with unobserved confounding »
Abhin Shah · Raaz Dwivedi · Devavrat Shah · Gregory Wornell -
2022 : Exploiting Neighborhood Interference with Low Order Interactions under Unit Randomized Design »
Mayleen Cortez · Matthew Eichhorn · Christina Yu -
2022 : Exploiting Neighborhood Interference with Low Order Interactions under Unit Randomized Design »
Mayleen Cortez · Matthew Eichhorn · Christina Yu -
2022 Poster: Staggered Rollout Designs Enable Causal Inference Under Interference Without Network Knowledge »
Mayleen Cortez · Matthew Eichhorn · Christina Yu -
2021 Poster: A Computationally Efficient Method for Learning Exponential Family Distributions »
Abhin Shah · Devavrat Shah · Gregory Wornell -
2021 Poster: Regulating algorithmic filtering on social media »
Sarah Cen · Devavrat Shah -
2021 Poster: Change Point Detection via Multivariate Singular Spectrum Analysis »
Arwa Alanqary · Abdullah Alomar · Devavrat Shah -
2021 Poster: PerSim: Data-Efficient Offline Reinforcement Learning with Heterogeneous Agents via Personalized Simulators »
Anish Agarwal · Abdullah Alomar · Varkey Alumootil · Devavrat Shah · Dennis Shen · Zhi Xu · Cindy Yang -
2020 Poster: Estimation of Skill Distribution from a Tournament »
Ali Jadbabaie · Anuran Makur · Devavrat Shah -
2020 Spotlight: Estimation of Skill Distribution from a Tournament »
Ali Jadbabaie · Anuran Makur · Devavrat Shah -
2020 Poster: Sample Efficient Reinforcement Learning via Low-Rank Matrix Estimation »
Devavrat Shah · Dogyoon Song · Zhi Xu · Yuzhe Yang -
2020 Poster: Adaptive Discretization for Model-Based Reinforcement Learning »
Sean Sinclair · Tianyu Wang · Gauri Jain · Siddhartha Banerjee · Christina Yu -
2020 Demonstration: tspDB: Time Series Predict DB »
Anish Agarwal · Abdullah Alomar · Devavrat Shah -
2019 : Poster and Coffee Break 1 »
Aaron Sidford · Aditya Mahajan · Alejandro Ribeiro · Alex Lewandowski · Ali H Sayed · Ambuj Tewari · Angelika Steger · Anima Anandkumar · Asier Mujika · Hilbert J Kappen · Bolei Zhou · Byron Boots · Chelsea Finn · Chen-Yu Wei · Chi Jin · Ching-An Cheng · Christina Yu · Clement Gehring · Craig Boutilier · Dahua Lin · Daniel McNamee · Daniel Russo · David Brandfonbrener · Denny Zhou · Devesh Jha · Diego Romeres · Doina Precup · Dominik Thalmeier · Eduard Gorbunov · Elad Hazan · Elena Smirnova · Elvis Dohmatob · Emma Brunskill · Enrique Munoz de Cote · Ethan Waldie · Florian Meier · Florian Schaefer · Ge Liu · Gergely Neu · Haim Kaplan · Hao Sun · Hengshuai Yao · Jalaj Bhandari · James A Preiss · Jayakumar Subramanian · Jiajin Li · Jieping Ye · Jimmy Smith · Joan Bas Serrano · Joan Bruna · John Langford · Jonathan Lee · Jose A. Arjona-Medina · Kaiqing Zhang · Karan Singh · Yuping Luo · Zafarali Ahmed · Zaiwei Chen · Zhaoran Wang · Zhizhong Li · Zhuoran Yang · Ziping Xu · Ziyang Tang · Yi Mao · David Brandfonbrener · Shirli Di-Castro · Riashat Islam · Zuyue Fu · Abhishek Naik · Saurabh Kumar · Benjamin Petit · Angeliki Kamoutsi · Simone Totaro · Arvind Raghunathan · Rui Wu · Donghwan Lee · Dongsheng Ding · Alec Koppel · Hao Sun · Christian Tjandraatmadja · Mahdi Karami · Jincheng Mei · Chenjun Xiao · Junfeng Wen · Zichen Zhang · Ross Goroshin · Mohammad Pezeshki · Jiaqi Zhai · Philip Amortila · Shuo Huang · Mariya Vasileva · El houcine Bergou · Adel Ahmadyan · Haoran Sun · Sheng Zhang · Lukas Gruber · Yuanhao Wang · Tetiana Parshakova -
2019 Poster: On Robustness of Principal Component Regression »
Anish Agarwal · Devavrat Shah · Dennis Shen · Dogyoon Song -
2019 Oral: On Robustness of Principal Component Regression »
Anish Agarwal · Devavrat Shah · Dennis Shen · Dogyoon Song -
2019 Poster: Nonparametric Contextual Bandits in Metric Spaces with Unknown Metric »
Nirandika Wanigasekara · Christina Yu -
2019 Tutorial: Synthetic Control »
Alberto Abadie · Vishal Misra · Devavrat Shah -
2018 Poster: Q-learning with Nearest Neighbors »
Devavrat Shah · Qiaomin Xie -
2017 : Iterative Collaborative Filtering for Sparse Matrix Estimation »
Christina Lee -
2017 : Poster Session »
Jaleh Zand · Kun Tu · Michael (Tao-Yi) Lee · Ian Covert · Daniel Hernandez · Zahra Ebrahimzadeh · Joanna Slawinska · Akara Supratak · Miao Lu · John Alberg · Dennis Shen · Serene Yeo · Hsing-Kuo K Pao · Kian Ming Adam Chai · Anish Agarwal · Dimitrios Giannakis · Muhammad Amjad -
2017 Workshop: Nearest Neighbors for Modern Applications with Massive Data: An Age-old Solution with New Challenges »
George H Chen · Devavrat Shah · Christina Lee -
2017 Poster: Thy Friend is My Friend: Iterative Collaborative Filtering for Sparse Matrix Estimation »
Christian Borgs · Jennifer Chayes · Christina Lee · Devavrat Shah -
2016 Poster: Blind Regression: Nonparametric Regression for Latent Variable Models via Collaborative Filtering »
Dogyoon Song · Christina Lee · Yihua Li · Devavrat Shah -
2014 Workshop: Analysis of Rank Data: Confluence of Social Choice, Operations Research, and Machine Learning »
Shivani Agarwal · Hossein Azari Soufiani · Guy Bresler · Sewoong Oh · David Parkes · Arun Rajkumar · Devavrat Shah -
2014 Poster: Hardness of parameter estimation in graphical models »
Guy Bresler · David Gamarnik · Devavrat Shah -
2014 Poster: A Latent Source Model for Online Collaborative Filtering »
Guy Bresler · George H Chen · Devavrat Shah -
2014 Spotlight: A Latent Source Model for Online Collaborative Filtering »
Guy Bresler · George H Chen · Devavrat Shah -
2014 Poster: Learning Mixed Multinomial Logit Model from Ordinal Data »
Sewoong Oh · Devavrat Shah -
2014 Poster: Structure learning of antiferromagnetic Ising models »
Guy Bresler · David Gamarnik · Devavrat Shah -
2013 Workshop: Crowdsourcing: Theory, Algorithms and Applications »
Jennifer Wortman Vaughan · Greg Stoddard · Chien-Ju Ho · Adish Singla · Michael Bernstein · Devavrat Shah · Arpita Ghosh · Evgeniy Gabrilovich · Denny Zhou · Nikhil Devanur · Xi Chen · Alexander Ihler · Qiang Liu · Genevieve Patterson · Ashwinkumar Badanidiyuru Varadaraja · Hossein Azari Soufiani · Jacob Whitehill -
2013 Poster: A Latent Source Model for Nonparametric Time Series Classification »
George H Chen · Stanislav Nikolov · Devavrat Shah -
2013 Poster: Computing the Stationary Distribution Locally »
Christina Lee · Asuman Ozdaglar · Devavrat Shah -
2012 Poster: Iterative ranking from pair-wise comparisons »
Sahand N Negahban · Sewoong Oh · Devavrat Shah -
2012 Spotlight: Iterative ranking from pair-wise comparisons »
Sahand N Negahban · Sewoong Oh · Devavrat Shah -
2011 Poster: Iterative Learning for Reliable Crowdsourcing Systems »
David R Karger · Sewoong Oh · Devavrat Shah -
2011 Oral: Iterative Learning for Reliable Crowdsourcing Systems »
David R Karger · Sewoong Oh · Devavrat Shah -
2009 Poster: A Data-Driven Approach to Modeling Choice »
Vivek Farias · Srikanth Jagabathula · Devavrat Shah -
2009 Spotlight: A Data-Driven Approach to Modeling Choice »
Vivek Farias · Srikanth Jagabathula · Devavrat Shah -
2009 Poster: Local Rules for Global MAP: When Do They Work ? »
Kyomin Jung · Pushmeet Kohli · Devavrat Shah -
2008 Poster: Inferring rankings under constrained sensing »
Srikanth Jagabathula · Devavrat Shah -
2008 Oral: Inferring rankings under constrained sensing »
Srikanth Jagabathula · Devavrat Shah -
2007 Spotlight: Message Passing for Max-weight Independent Set »
Sujay Sanghavi · Devavrat Shah · Alan S Willsky -
2007 Poster: Message Passing for Max-weight Independent Set »
Sujay Sanghavi · Devavrat Shah · Alan S Willsky -
2007 Poster: Local Algorithms for Approximate Inference in Minor-Excluded Graphs »
Kyomin Jung · Devavrat Shah