Timezone: »
The goal of low-income fare subsidy programs is to increase equitable access to public transit, and in doing so, increase access to jobs, housing, education and other essential resources. King County Metro, one of the largest transit providers focused on equitable public transit, has been innovative in launching new programs for low-income riders. However, due to the observational nature of data on ridership behavior in King County, evaluating the effectiveness of such innovative policies is difficult. In this work, we used seven datasets from a variety of sources, and used a recent interpretable machine-learning-based causal inference matching method called FLAME to evaluate one of King County Metro’s largest programs implemented in 2020: the Subsidized Annual Pass (SAP). Using FLAME, we construct high-quality matched groups and identify features that are important for predicting ridership and re-enrollment. Our analysis provides clear and insightful feedback for policy-makers. In particular, we found that SAP is effective in increasing long-term ridership and re-enrollment. Notably, there are pronounced positive treatment effects in populations that have higher access to public transit and jobs. Treatment effects are also more pronounced in the Asian population and in individuals ages 65+. Insights from this work can help broadly inform public transportation policy decisions and generalize broadly to other cities and other forms of transportation.
Author Information
Gaurav Rajesh Parikh (Duke University, Duke Kunshan University)
Albert Sun (Duke University)
Jenny Huang
Lesia Semenova (Duke University)
Cynthia Rudin (Duke)
More from the Same Authors
-
2023 Poster: This Looks Like Those: Illuminating Prototypical Concepts Using Multiple Visualizations »
Chiyu Ma · Brandon Zhao · Chaofan Chen · Cynthia Rudin -
2023 Poster: A Path to Simpler Models Starts With Noise »
Lesia Semenova · Harry Chen · Ronald Parr · Cynthia Rudin -
2023 Poster: The Rashomon Importance Distribution: Getting RID of Unstable, Single Model-based Variable Importance »
Jon Donnelly · Srikar Katta · Cynthia Rudin · Edward Browne -
2023 Poster: Exploring and Interacting with the Set of Good Sparse Generalized Additive Models »
Zhi Chen · Chudi Zhong · Margo Seltzer · Cynthia Rudin -
2023 Poster: OKRidge: Scalable Optimal k-Sparse Ridge Regression for Learning Dynamical Systems »
Jiachang Liu · Sam Rosen · Chudi Zhong · Cynthia Rudin -
2022 Panel: Panel 3A-2: Linear tree shap… & Exploring the Whole… »
peng yu · Cynthia Rudin -
2022 : Panel Discussion »
Cynthia Rudin · Dan Bohus · Brenna Argall · Alison Gopnik · Igor Mordatch · Samuel Kaski -
2022 : Let’s Give Domain Experts a Choice by Creating Many Approximately-Optimal Machine Learning Models »
Cynthia Rudin -
2022 Poster: Exploring the Whole Rashomon Set of Sparse Decision Trees »
Rui Xin · Chudi Zhong · Zhi Chen · Takuya Takagi · Margo Seltzer · Cynthia Rudin -
2022 Poster: Rethinking Nonlinear Instrumental Variable Models through Prediction Validity »
Chunxiao Li · Cynthia Rudin · Tyler H. McCormick -
2022 Poster: FasterRisk: Fast and Accurate Interpretable Risk Scores »
Jiachang Liu · Chudi Zhong · Boxuan Li · Margo Seltzer · Cynthia Rudin -
2021 : AME: Interpretable Almost Exact Matching for Causal Inference »
Haoning Jiang · Thomas Howell · Neha Gupta · Vittorio Orlandi · Sudeepa Roy · Marco Morucci · Harsh Parikh · Alexander Volfovsky · Cynthia Rudin -
2020 : Contributed Talk - Cryo-ZSSR: multiple-image super-resolution based on deep internal learning »
Qinwen Huang · Reed Chen · Cynthia Rudin -
2020 Workshop: Self-Supervised Learning -- Theory and Practice »
Pengtao Xie · Shanghang Zhang · Pulkit Agrawal · Ishan Misra · Cynthia Rudin · Abdelrahman Mohamed · Wenzhen Yuan · Barret Zoph · Laurens van der Maaten · Xingyi Yang · Eric Xing -
2020 : How should researchers engage with controversial applications of AI? »
Logan Koepke · CATHERINE ONEIL · Tawana Petty · Cynthia Rudin · Deborah Raji · Shawn Bushway -
2020 Workshop: Fair AI in Finance »
Senthil Kumar · Cynthia Rudin · John Paisley · Isabelle Moulinier · C. Bayan Bruss · Eren K. · Susan Tibbs · Oluwatobi Olabiyi · Simona Gandrabur · Svitlana Vyetrenko · Kevin Compher -
2019 Poster: This Looks Like That: Deep Learning for Interpretable Image Recognition »
Chaofan Chen · Oscar Li · Daniel Tao · Alina Barnett · Cynthia Rudin · Jonathan K Su -
2019 Spotlight: This Looks Like That: Deep Learning for Interpretable Image Recognition »
Chaofan Chen · Oscar Li · Daniel Tao · Alina Barnett · Cynthia Rudin · Jonathan K Su -
2019 Poster: Optimal Sparse Decision Trees »
Xiyang Hu · Cynthia Rudin · Margo Seltzer -
2019 Spotlight: Optimal Sparse Decision Trees »
Xiyang Hu · Cynthia Rudin · Margo Seltzer -
2018 : Invited Talk 6: Is it possible to have interpretable models for AI in Finance? »
Cynthia Rudin -
2018 : Poster Session 1 (note there are numerous missing names here, all papers appear in all poster sessions) »
Akhilesh Gotmare · Kenneth Holstein · Jan Brabec · Michal Uricar · Kaleigh Clary · Cynthia Rudin · Sam Witty · Andrew Ross · Shayne O'Brien · Babak Esmaeili · Jessica Forde · Massimo Caccia · Ali Emami · Scott Jordan · Bronwyn Woods · D. Sculley · Rebekah Overdorf · Nicolas Le Roux · Peter Henderson · Brandon Yang · Tzu-Yu Liu · David Jensen · Niccolo Dalmasso · Weitang Liu · Paul Marc TRICHELAIR · Jun Ki Lee · Akanksha Atrey · Matt Groh · Yotam Hechtlinger · Emma Tosch