Timezone: »
Mutual knowledge distillation (MKD) improves a model by distilling knowledge from another model. However, \textit{not all knowledge is certain and correct}, especially under adverse conditions.For example, label noise usually leads to less reliable models due to undesired memorization. Wrong knowledge harms the learning rather than helps it. This problem can be handled by two aspects: (i) knowledge source, improving the reliability of each model (knowledge producer) improving the knowledge source's reliability; (ii) selecting reliable knowledge for distillation. Making a model more reliable is widely studied while selective MKD receives little attention. Therefore, we focus on studying selective MKD and highlight its importance in this work. Concretely, a generic MKD framework, \underline{C}onfident knowledge selection followed by \underline{M}utual \underline{D}istillation (CMD), is designed. The key component of CMD is a generic knowledge selection formulation, making the selection threshold either static (CMD-S) or progressive (CMD-P). Additionally, CMD covers two special cases: zero knowledge and all knowledge, leading to a unified MKD framework. Extensive experiments are present to demonstrate the effectiveness of CMD and thoroughly justify the design of CMD.
Author Information
ZIYUN LI (Hasso Plattner Institut)
Xinshao Wang (University of Oxford)
Christoph Meinel (Hasso Plattner Institute)
Neil Robertson (Queen's University Belfast)
David Clifton (University of Oxford)
Professor of Clinical Machine Learning Department of Engineering Science University of Oxford
Haojin Yang (Hasso-Plattner-Institut für Digital Engineering gGmbH)
More from the Same Authors
-
2022 Poster: Expectation-Maximization Contrastive Learning for Compact Video-and-Language Representations »
Peng Jin · Jinfa Huang · Fenglin Liu · Xian Wu · Shen Ge · Guoli Song · David Clifton · Jie Chen -
2022 Poster: Misspecified Phase Retrieval with Generative Priors »
Zhaoqiang Liu · Xinshao Wang · Jiulong Liu -
2022 : A Closer Look at Novel Class Discovery from the Labeled Set »
ZIYUN LI · Jona Otholt · Ben Dai · Di Hu · Christoph Meinel · Haojin Yang -
2023 Poster: Rethinking Semi-Supervised Medical Image Segmentation: A Variance-Reduction Perspective »
Chenyu You · Weicheng Dai · Yifei Min · Fenglin Liu · David Clifton · S. Kevin Zhou · Lawrence Staib · James Duncan -
2022 Spotlight: Lightning Talks 6B-3 »
Lingfeng Yang · Yao Lai · Zizheng Pan · Zhenyu Wang · Weicong Liang · Chuanyang Zheng · Jian-Wei Zhang · Peng Jin · Jing Liu · Xiuying Wei · Yao Mu · Xiang Li · YUHUI YUAN · Zizheng Pan · Yifan Sun · Yunchen Zhang · Jianfei Cai · Hao Luo · zheyang li · Jinfa Huang · Haoyu He · Yi Yang · Ping Luo · Fenglin Liu · Henghui Ding · Borui Zhao · Xiangguo Zhang · Kai Zhang · Pichao WANG · Bohan Zhuang · Wei Chen · Ruihao Gong · Zhi Yang · Xian Wu · Feng Ding · Jianfei Cai · Xiao Luo · Renjie Song · Weihong Lin · Jian Yang · Wenming Tan · Bohan Zhuang · Shanghang Zhang · Shen Ge · Fan Wang · Qi Zhang · Guoli Song · Jun Xiao · Hao Li · Ding Jia · David Clifton · Ye Ren · Fengwei Yu · Zheng Zhang · Jie Chen · Shiliang Pu · Xianglong Liu · Chao Zhang · Han Hu -
2022 Spotlight: Expectation-Maximization Contrastive Learning for Compact Video-and-Language Representations »
Peng Jin · Jinfa Huang · Fenglin Liu · Xian Wu · Shen Ge · Guoli Song · David Clifton · Jie Chen -
2022 Spotlight: Misspecified Phase Retrieval with Generative Priors »
Zhaoqiang Liu · Xinshao Wang · Jiulong Liu -
2022 Poster: Retrieve, Reason, and Refine: Generating Accurate and Faithful Patient Instructions »
Fenglin Liu · Bang Yang · Chenyu You · Xian Wu · Shen Ge · Zhangdaihong Liu · Xu Sun · Yang Yang · David Clifton -
2021 Poster: CROCS: Clustering and Retrieval of Cardiac Signals Based on Patient Disease Class, Sex, and Age »
Dani Kiyasseh · Tingting Zhu · David Clifton