Timezone: »
In applications involving sensitive data, such as finance and healthcare, the necessity for preserving data privacy can be a significant barrier to machine learning model development. Differential privacy (DP) has emerged as one canonical standard for provable privacy. However, DP's strong theoretical guarantees often come at the cost of a large drop in its utility for machine learning; and DP guarantees themselves can be difficult to interpret. As a result, standard DP has encountered deployment challenges in practice. In this work, we propose a different privacy notion, re-identification privacy (RIP), to address these challenges. RIP guarantees are easily interpretable in terms of the success rate of membership inference attacks. We give a precise characterization of the relationship between RIP and DP, and show that RIP can be achieved using less randomness compared to the amount required for guaranteeing DP, leading to smaller drop in utility. Our theoretical results also give rise to a simple algorithm for guaranteeing RIP which can be used as a wrapper around any algorithm with a continuous output, including parametric model training.
Author Information
Zachary Izzo (Stanford University)
Jinsung Yoon (Google)
I am a research scientist at Google Cloud AI. I am currently working on diverse machine learning research topics such as generative models, self- and semi-supervised learning, model interpretation, data imputation, and synthetic data generation. Previously, I worked on machine learning for medicine with Professor Mihaela van der Schaar as a graduate student researcher in UCLA Electrical and Computer Engineering Department. I received my Ph.D. and M.S. in Electrical and Computer Engineering Department at UCLA, and B.S. in Electrical and Computer Engineering at Seoul National University (SNU).
Sercan Arik (Google)
James Zou (Stanford)
More from the Same Authors
-
2022 : Predicting Immune Escape with Pretrained Protein Language Model Embeddings »
Kyle Swanson · Howard Chang · James Zou -
2022 : Data-driven subgroup identification for linear regression »
Zachary Izzo · Ruishan Liu · James Zou -
2022 : Is Unsupervised Performance Estimation Impossible When Both Covariates and Labels shift? »
Lingjiao Chen · Matei Zaharia · James Zou -
2022 : DrML: Diagnosing and Rectifying Vision Models using Language »
Yuhui Zhang · Jeff Z. HaoChen · Shih-Cheng Huang · Kuan-Chieh Wang · James Zou · Serena Yeung -
2022 : Recommendation for New Drugs with Limited Prescription Data »
Zhenbang Wu · Huaxiu Yao · Zhe Su · David Liebovitz · Lucas Glass · James Zou · Chelsea Finn · Jimeng Sun -
2022 : An Electrocardiogram-Based Risk Score for Cardiovascular Mortality »
John Hughes · David Ouyang · Pierre Elias · James Zou · Euan Ashley · Marco Perez -
2022 : An Electrocardiogram-Based Risk Score for Cardiovascular Mortality »
John Hughes · David Ouyang · Pierre Elias · James Zou · Euan Ashley · Marco Perez -
2022 Poster: Self-Supervised Learning with an Information Maximization Criterion »
Serdar Ozsoy · Shadi Hamdan · Sercan Arik · Deniz Yuret · Alper Erdogan -
2022 Poster: Estimating and Explaining Model Performance When Both Covariates and Labels Shift »
Lingjiao Chen · Matei Zaharia · James Zou -
2022 Poster: SkinCon: A skin disease dataset densely annotated by domain experts for fine-grained debugging and analysis »
Roxana Daneshjou · Mert Yuksekgonul · Zhuo Ran Cai · Roberto Novoa · James Zou -
2022 Poster: HAPI: A Large-scale Longitudinal Dataset of Commercial ML API Predictions »
Lingjiao Chen · Zhihua Jin · Evan Sabri Eyuboglu · Christopher RĂ© · Matei Zaharia · James Zou -
2022 Poster: Uncalibrated Models Can Improve Human-AI Collaboration »
Kailas Vodrahalli · Tobias Gerstenberg · James Zou -
2022 Poster: C-Mixup: Improving Generalization in Regression »
Huaxiu Yao · Yiping Wang · Linjun Zhang · James Zou · Chelsea Finn -
2022 Poster: Mind the Gap: Understanding the Modality Gap in Multi-modal Contrastive Representation Learning »
Victor Weixin Liang · Yuhui Zhang · Yongchan Kwon · Serena Yeung · James Zou -
2022 Poster: WeightedSHAP: analyzing and improving Shapley based feature attributions »
Yongchan Kwon · James Zou -
2021 Poster: Adversarial Training Helps Transfer Learning via Better Representations »
Zhun Deng · Linjun Zhang · Kailas Vodrahalli · Kenji Kawaguchi · James Zou -
2021 Poster: Controlling Neural Networks with Rule Representations »
Sungyong Seo · Sercan Arik · Jinsung Yoon · Xiang Zhang · Kihyuk Sohn · Tomas Pfister -
2021 Poster: Dimensionality Reduction for Wasserstein Barycenter »
Zachary Izzo · Sandeep Silwal · Samson Zhou -
2020 Poster: On Completeness-aware Concept-Based Explanations in Deep Neural Networks »
Chih-Kuan Yeh · Been Kim · Sercan Arik · Chun-Liang Li · Tomas Pfister · Pradeep Ravikumar -
2020 : Interpretable Sequence Learning for Covid-19 Forecasting »
Sercan Arik -
2020 Poster: VIME: Extending the Success of Self- and Semi-supervised Learning to Tabular Domain »
Jinsung Yoon · Yao Zhang · James Jordon · Mihaela van der Schaar -
2020 Poster: Interpretable Sequence Learning for Covid-19 Forecasting »
Sercan Arik · Chun-Liang Li · Jinsung Yoon · Rajarishi Sinha · Arkady Epshteyn · Long Le · Vikas Menon · Shashank Singh · Leyou Zhang · Martin Nikoltchev · Yash Sonthalia · Hootan Nakhost · Elli Kanal · Tomas Pfister -
2020 Spotlight: Interpretable Sequence Learning for Covid-19 Forecasting »
Sercan Arik · Chun-Liang Li · Jinsung Yoon · Rajarishi Sinha · Arkady Epshteyn · Long Le · Vikas Menon · Shashank Singh · Leyou Zhang · Martin Nikoltchev · Yash Sonthalia · Hootan Nakhost · Elli Kanal · Tomas Pfister -
2020 Session: Orals & Spotlights Track 02: COVID/Health/Bio Applications »
Tristan Naumann · James Zou -
2019 Poster: Making AI Forget You: Data Deletion in Machine Learning »
Antonio Ginart · Melody Guan · Gregory Valiant · James Zou -
2019 Spotlight: Making AI Forget You: Data Deletion in Machine Learning »
Antonio Ginart · Melody Guan · Gregory Valiant · James Zou -
2019 Poster: Time-series Generative Adversarial Networks »
Jinsung Yoon · Daniel Jarrett · Mihaela van der Schaar -
2019 Poster: Differentially Private Bagging: Improved utility and cheaper privacy than subsample-and-aggregate »
James Jordon · Jinsung Yoon · Mihaela van der Schaar -
2017 Workshop: Machine Learning in Computational Biology »
James Zou · Anshul Kundaje · Gerald Quon · Nicolo Fusi · Sara Mostafavi -
2017 Poster: NeuralFDR: Learning Discovery Thresholds from Hypothesis Features »
Fei Xia · Martin J Zhang · James Zou · David Tse