Timezone: »
Individual Privacy Accounting with Gaussian Differential Privacy
Antti Koskela · Marlon Tobaben · Antti Honkela
Event URL: https://openreview.net/forum?id=j4vxc2FjJL »
Individual privacy accounting enables bounding differential privacy (DP) loss individually for each participant involved in the analysis. This can be informative as often the individual privacy losses are considerably smaller than those indicated by the DP bounds that are based on considering worst-case bounds at each data access. In order to account for the individual privacy losses in a principled manner, we need a privacy accountant for adaptive compositions of randomised mechanisms, where the loss incurred at a given data access is allowed to be smaller than the worst-case loss. This kind of analysis has been carried out for the R\'enyi differential privacy (RDP) by Feldman and Zrnic (2021), however not yet for the so-called optimal privacy accountants. We make first steps in this direction by providing a careful analysis using the Gaussian differential privacy which gives optimal bounds for the Gaussian mechanism, one of the most versatile DP mechanisms. This approach is based on determining a certain supermartingale for the hockey-stick divergence and on extending the R\'enyi divergence-based fully adaptive composition results by Feldman and Zrnic (2021). We also consider measuring the individual $(\varepsilon,\delta)$-privacy losses using the so-called privacy loss distributions. With the help of the Blackwell theorem, we can then make use of the RDP analysis to construct an approximative individual $(\varepsilon,\delta)$-accountant. As an observation of indepedent interest, we experimentally illustrate that individual filtering leads to a disparate loss of accuracies among subgroups when training a neural network using DP gradient descent.
Individual privacy accounting enables bounding differential privacy (DP) loss individually for each participant involved in the analysis. This can be informative as often the individual privacy losses are considerably smaller than those indicated by the DP bounds that are based on considering worst-case bounds at each data access. In order to account for the individual privacy losses in a principled manner, we need a privacy accountant for adaptive compositions of randomised mechanisms, where the loss incurred at a given data access is allowed to be smaller than the worst-case loss. This kind of analysis has been carried out for the R\'enyi differential privacy (RDP) by Feldman and Zrnic (2021), however not yet for the so-called optimal privacy accountants. We make first steps in this direction by providing a careful analysis using the Gaussian differential privacy which gives optimal bounds for the Gaussian mechanism, one of the most versatile DP mechanisms. This approach is based on determining a certain supermartingale for the hockey-stick divergence and on extending the R\'enyi divergence-based fully adaptive composition results by Feldman and Zrnic (2021). We also consider measuring the individual $(\varepsilon,\delta)$-privacy losses using the so-called privacy loss distributions. With the help of the Blackwell theorem, we can then make use of the RDP analysis to construct an approximative individual $(\varepsilon,\delta)$-accountant. As an observation of indepedent interest, we experimentally illustrate that individual filtering leads to a disparate loss of accuracies among subgroups when training a neural network using DP gradient descent.
Author Information
Antti Koskela (Nokia Bell Labs)
Marlon Tobaben (University of Helsinki)
Antti Honkela (University of Helsinki)
More from the Same Authors
-
2020 : Tight Approximate Differential Privacy for Discrete-Valued Mechanisms Using FFT »
Antti Koskela -
2021 : Differentially Private Hamiltonian Monte Carlo »
Ossi Räisä · Antti Koskela · Antti Honkela -
2021 : Tight Accounting in the Shuffle Model of Differential Privacy »
Antti Koskela · Mikko Heikkilä · Antti Honkela -
2023 Poster: Practical Differentially Private Hyperparameter Tuning with Subsampling »
Antti Koskela · Tejas Kulkarni -
2023 Poster: Improving the Privacy and Practicality of Objective Perturbation for Differentially Private Linear Learners »
Rachel Redberg · Antti Koskela · Yu-Xiang Wang -
2023 Competition: NeurIPS 2023 Competition: Privacy Preserving Federated Learning Document VQA »
Dimosthenis Karatzas · Rubèn Tito · Lei Kang · Mohamed Ali Souibgui · Khanh Nguyen · Raouf Kerkouche · Kangsoo Jung · Marlon Tobaben · Joonas Jälkö · Vincent Poulain d'Andecy · Aurélie JOSEPH · Ernest Valveny · Josep Llados · Antti Honkela · Mario Fritz -
2022 : Noise-Aware Statistical Inference with Differentially Private Synthetic Data »
Ossi Räisä · Joonas Jälkö · Antti Honkela · Samuel Kaski -
2021 Workshop: Privacy in Machine Learning (PriML) 2021 »
Yu-Xiang Wang · Borja Balle · Giovanni Cherubin · Kamalika Chaudhuri · Antti Honkela · Jonathan Lebensold · Casey Meehan · Mi Jung Park · Adrian Weller · Yuqing Zhu -
2020 Workshop: Privacy Preserving Machine Learning - PriML and PPML Joint Edition »
Borja Balle · James Bell · Aurélien Bellet · Kamalika Chaudhuri · Adria Gascon · Antti Honkela · Antti Koskela · Casey Meehan · Olga Ohrimenko · Mi Jung Park · Mariana Raykova · Mary Anne Smart · Yu-Xiang Wang · Adrian Weller -
2019 : Poster Session »
Clement Canonne · Kwang-Sung Jun · Seth Neel · Di Wang · Giuseppe Vietri · Liwei Song · Jonathan Lebensold · Huanyu Zhang · Lovedeep Gondara · Ang Li · FatemehSadat Mireshghallah · Jinshuo Dong · Anand D Sarwate · Antti Koskela · Joonas Jälkö · Matt Kusner · Dingfan Chen · Mi Jung Park · Ashwin Machanavajjhala · Jayashree Kalpathy-Cramer · · Vitaly Feldman · Andrew Tomkins · Hai Phan · Hossein Esfandiari · Mimansa Jaiswal · Mrinank Sharma · Jeff Druce · Casey Meehan · Zhengli Zhao · Hsiang Hsu · Davis Railsback · Abraham Flaxman · · Julius Adebayo · Aleksandra Korolova · Jiaming Xu · Naoise Holohan · Samyadeep Basu · Matthew Joseph · My Thai · Xiaoqian Yang · Ellen Vitercik · Michael Hutchinson · Chenghong Wang · Gregory Yauney · Yuchao Tao · Chao Jin · Si Kai Lee · Audra McMillan · Rauf Izmailov · Jiayi Guo · Siddharth Swaroop · Tribhuvanesh Orekondy · Hadi Esmaeilzadeh · Kevin Procopio · Alkis Polyzotis · Jafar Mohammadi · Nitin Agrawal -
2019 Workshop: Privacy in Machine Learning (PriML) »
Borja Balle · Kamalika Chaudhuri · Antti Honkela · Antti Koskela · Casey Meehan · Mi Jung Park · Mary Anne Smart · Mary Anne Smart · Adrian Weller -
2019 Poster: Differentially Private Markov Chain Monte Carlo »
Mikko Heikkilä · Joonas Jälkö · Onur Dikmen · Antti Honkela -
2019 Spotlight: Differentially Private Markov Chain Monte Carlo »
Mikko Heikkilä · Joonas Jälkö · Onur Dikmen · Antti Honkela -
2018 : Poster Session »
Phillipp Schoppmann · Patrick Yu · Valerie Chen · Travis Dick · Marc Joye · Ningshan Zhang · Frederik Harder · Olli Saarikivi · Théo Ryffel · Yunhui Long · Théo JOURDAN · Di Wang · Antonio Marcedone · Negev Shekel Nosatzki · Yatharth A Dubey · Antti Koskela · Peter Bloem · Aleksandra Korolova · Martin Bertran · Hao Chen · Galen Andrew · Natalia Martinez · Janardhan Kulkarni · Jonathan Passerat-Palmbach · Guillermo Sapiro · Amrita Roy Chowdhury -
2018 Workshop: Machine Learning Open Source Software 2018: Sustainable communities »
Heiko Strathmann · Viktor Gal · Ryan Curtin · Antti Honkela · Sergey Lisitsyn · Cheng Soon Ong -
2017 : Invited talk: Differential privacy and Bayesian learning »
Antti Honkela -
2017 Poster: Differentially private Bayesian learning on distributed data »
Mikko Heikkilä · Eemil Lagerspetz · Samuel Kaski · Kana Shimizu · Sasu Tarkoma · Antti Honkela -
2015 : Genome-wide modelling of transcription kinetics reveals patterns of RNA production delays »
Antti Honkela -
2013 Workshop: Machine Learning Open Source Software: Towards Open Workflows »
Antti Honkela · Cheng Soon Ong