Timezone: »
Explainable question answering systems should produce not only accurate answers but also rationales that justify their reasoning and allow humans to check their work. But what sorts of rationales are useful and how can we train systems to produce them? We propose a new style of rationale for open-book question answering, called \emph{markup-and-mask}, which combines aspects of extractive and free-text explanations. In the markup phase, the passage is augmented with free-text markup that enables each sentence to stand on its own outside the discourse context. In the masking phase, a sub-span of the marked-up passage is selected. To train a system to produce markup-and-mask rationales without annotations, we leverage in-context learning. Specifically, we generate silver annotated data by sending a series of prompts to a frozen pretrained language model, which acts as a teacher. We then fine-tune a smaller student model by training on the subset of rationales that led to correct answers. The student is "honest" in the sense that it is a pipeline: the rationale acts as a bottleneck between the passage and the answer, while the "untrusted" teacher operates under no such constraints. Thus, we offer a new way to build trustworthy pipeline systems from a combination of end-task annotations and frozen pretrained language models.
Author Information
Jacob Eisenstein (Google)
Daniel Andor (Google)
Bernd Bohnet (Google)
Michael Collins (Google)
David Mimno (Cornell University)
More from the Same Authors
-
2021 Spotlight: Counterfactual Invariance to Spurious Correlations in Text Classification »
Victor Veitch · Alexander D'Amour · Steve Yadlowsky · Jacob Eisenstein -
2023 Workshop: Workshop on Distribution Shifts: New Frontiers with Foundation Models »
Rebecca Roelofs · Fanny Yang · Hongseok Namkoong · Masashi Sugiyama · Jacob Eisenstein · Pang Wei Koh · Shiori Sagawa · Tatsunori Hashimoto · Yoonho Lee -
2022 Workshop: Workshop on Distribution Shifts: Connecting Methods and Applications »
Chelsea Finn · Fanny Yang · Hongseok Namkoong · Masashi Sugiyama · Jacob Eisenstein · Jonas Peters · Rebecca Roelofs · Shiori Sagawa · Pang Wei Koh · Yoonho Lee -
2021 Poster: Counterfactual Invariance to Spurious Correlations in Text Classification »
Victor Veitch · Alexander D'Amour · Steve Yadlowsky · Jacob Eisenstein -
2016 Poster: Beyond Exchangeability: The Chinese Voting Process »
Moontae Lee · Seok Hyun Jin · David Mimno -
2016 Oral: Beyond Exchangeability: The Chinese Voting Process »
Moontae Lee · Seok Hyun Jin · David Mimno -
2015 Poster: Robust Spectral Inference for Joint Stochastic Matrix Factorization »
Moontae Lee · David Bindel · David Mimno -
2013 Workshop: Topic Models: Computation, Application, and Evaluation »
David Mimno · Amr Ahmed · Jordan Boyd-Graber · Ankur Moitra · Hanna Wallach · Alexander Smola · David Blei · Anima Anandkumar -
2012 Poster: Scalable Inference of Overlapping Communities »
Prem Gopalan · David Mimno · Sean Gerrish · Michael Freedman · David Blei -
2012 Spotlight: Scalable Inference of Overlapping Communities »
Prem Gopalan · David Mimno · Sean Gerrish · Michael Freedman · David Blei -
2009 Poster: Rethinking LDA: Why Priors Matter »
Hanna Wallach · David Mimno · Andrew McCallum -
2009 Spotlight: Rethinking LDA: Why Priors Matter »
Hanna Wallach · David Mimno · Andrew McCallum