Timezone: »
Machine learning models are susceptible to a class of attacks known as adversarial poisoning where an adversary can maliciously manipulate training data to hinder model performance or, more concerningly, insert backdoors to exploit at inference time. Many methods have been proposed to defend against adversarial poisoning by either identifying the poisoned samples to facilitate removal or developing poison agnostic training algorithms. Although effective, these proposed approaches can have unintended consequences on other aspects of model performance, such as worsening performance on certain data sub-populations, thus inducing a classification bias. In this work, we evaluate several adversarial poisoning defenses. In addition to traditional security metrics, i.e., robustness to poisoned samples, we propose a new metric to measure the potential undesirable discrimination of sub-populations resulting from using these defenses. Our investigation highlights that many of the evaluated defenses trade decision fairness to achieve higher adversarial poisoning robustness. Given these results, we recommend our proposed metric to be part of standard evaluations of machine learning defenses.
Author Information
Nathalie Baracaldo (IBM Research)
Nathalie Baracaldo leads the AI Security and Privacy Solutions team and is a Research Staff Member at IBM’s Almaden Research Center in San Jose, CA. Nathalie is passionate about delivering machine learning solutions that are highly accurate, withstand adversarial attacks and protect data privacy. Her team focuses on two main areas: federated learning, where models are trained without directly accessing training data and adversarial machine learning, where defenses are designed to withstand potential attacks to the machine learning pipeline. Nathalie is the primary investigator for the DARPA program Guaranteeing AI Robustness Against Deception (GARD), where AI security is investigated. Her team contributes to the Adversarial Robustness 360 Toolbox (ART). Nathalie is also the co-editor of the book: “Federated Learning: A Comprehensive Overview of Methods and Applications”, 2022 available in paper and as e-book in Springer, Apple books and Amazon. Nathalie's primary research interests lie at the intersection of information security, privacy and trust. As part of her work, she has also designed and implemented secure systems in the areas of cloud computing, Platform as a Service, secure data sharing and Internet of the Things. She has also contributed to projects to design scalable systems that monitor, manage performance and manage service level agreements in cloud environments. In 2020, Nathalie received the IBM Master Inventor distinction for her contributions to the IBM Intellectual Property and innovation. Nathalie also received the 2021 Corporate Technical Recognition, one of the highest recognitions provided to IBMers for breakthrough technical achievements that have led to notable market and industry success for IBM. This recognition was awarded for Nathalie's contribution to the Trusted AI initiative. Nathalie is associated Editor IEEE Transactions on Service Computing. Nathalie received her Ph.D. degree from the University of Pittsburgh in 2016. Her dissertation focused on preventing insider threats through the use of adaptive access control systems that integrate multiple sources of contextual information. Some of the topics that she has explored in the past include secure storage systems, privacy in online social networks, secure interoperability in distributed systems, risk management and trust evaluation. During her Ph.D. studies she received the 2014 Allen Kent Award for Outstanding Contributions to the Graduate Program in Information Science by the School of Information Sciences at the University of Pittsburgh. Nathalie also holds a master’s degree with Cum Laude distinction in computer sciences from the Universidad de los Andes, Colombia. Prior to that, she earned two undergraduate degrees in Computer Science and Industrial Engineering at the same university.
Kevin Eykholt (International Business Machines)
Farhan Ahmed (International Business Machines)
Yi Zhou (IBM Research)
Shriti Priya
Taesung Lee (IBM Research AI)
Swanand Kadhe (International Business Machines)
Yusong Tan (MITRE Corporation)
Sridevi Polavaram
Sterling Suggs (Two Six Technologies)
More from the Same Authors
-
2021 : FLoRA: Single-shot Hyper-parameter Optimization for Federated Learning »
Yi Zhou · Parikshit Ram · Theodoros Salonidis · Nathalie Baracaldo · Horst Samulowitz · Heiko Ludwig -
2022 : On the Feasibility of Compressing Certifiably Robust Neural Networks »
Pratik Vaishnavi · Veena Krish · Farhan Ahmed · Kevin Eykholt · Amir Rahmati -
2022 Spotlight: Lightning Talks 5B-2 »
Conglong Li · Mohammad Azizmalayeri · Mojan Javaheripi · Pratik Vaishnavi · Jon Hasselgren · Hao Lu · Kevin Eykholt · Arshia Soltani Moakhar · Wenze Liu · Gustavo de Rosa · Nikolai Hofmann · Minjia Zhang · Zixuan Ye · Jacob Munkberg · Amir Rahmati · Arman Zarei · Subhabrata Mukherjee · Yuxiong He · Shital Shah · Reihaneh Zohrabi · Hongtao Fu · Tomasz Religa · Yuliang Liu · Mohammad Manzuri · Mohammad Hossein Rohban · Zhiguo Cao · Caio Cesar Teodoro Mendes · Sebastien Bubeck · Farinaz Koushanfar · Debadeepta Dey -
2022 Spotlight: Accelerating Certified Robustness Training via Knowledge Transfer »
Pratik Vaishnavi · Kevin Eykholt · Amir Rahmati -
2022 Workshop: Federated Learning: Recent Advances and New Challenges »
Shiqiang Wang · Nathalie Baracaldo · Olivia Choudhury · Gauri Joshi · Peter Richtarik · Praneeth Vepakomma · Han Yu -
2022 Poster: Accelerating Certified Robustness Training via Knowledge Transfer »
Pratik Vaishnavi · Kevin Eykholt · Amir Rahmati -
2022 Expo Demonstration: Practical Deployment of Secure Federated Learning: Challenges, Opportunities and Solutions »
Yi Zhou · Nathalie Baracaldo -
2021 : Contributed Talk 6: FLoRA: Single-shot Hyper-parameter Optimization for Federated Learning »
Yi Zhou · Parikshit Ram · Theodoros Salonidis · Nathalie Baracaldo · Horst Samulowitz · Heiko Ludwig -
2020 Workshop: Workshop on Dataset Curation and Security »
Nathalie Baracaldo · Yonatan Bisk · Avrim Blum · Michael Curry · John Dickerson · Micah Goldblum · Tom Goldstein · Bo Li · Avi Schwarzschild -
2020 Expo Demonstration: Beyond AutoML: AI Automation & Scaling »
Lisa Amini · Nitin Gupta · Parikshit Ram · Kiran Kate · Bhanukiran Vinzamuri · Nathalie Baracaldo · Martin Korytak · Daniel K Weidele · Dakuo Wang -
2019 : Poster Session »
Nathalie Baracaldo · Seth Neel · Tuyen Le · Dan Philps · Suheng Tao · Sotirios Chatzis · Toyo Suzumura · Wei Wang · WENHANG BAO · Solon Barocas · Manish Raghavan · Samuel Maina · Reginald Bryant · Kush Varshney · Skyler D. Speakman · Navdeep Gill · Nicholas Schmidt · Kevin Compher · Naveen Sundar Govindarajulu · Vivek Sharma · Praneeth Vepakomma · Tristan Swedish · Jayashree Kalpathy-Cramer · Ramesh Raskar · Shihao Zheng · Mykola Pechenizkiy · Marco Schreyer · Li Ling · Chirag Nagpal · Robert Tillman · Manuela Veloso · Hanjie Chen · Xintong Wang · Michael Wellman · Matthew van Adelsberg · Ben Wood · Hans Buehler · Mahmoud Mahfouz · Antonios Alexos · Megan Shearer · Antigoni Polychroniadou · Lucia Larise Stavarache · Dmitry Efimov · Johnston P Hall · Yukun Zhang · Emily Diana · Sumitra Ganesh · Vineeth Ravi · · Swetasudha Panda · Xavier Renard · Matthew Jagielski · Yonadav Shavit · Joshua Williams · Haoran Wei · Shuang (Sophie) Zhai · Xinyi Li · Hongda Shen · Daiki Matsunaga · Jaesik Choi · Alexis Laignelet · Batuhan Guler · Jacobo Roa Vicens · Ajit Desai · Jonathan Aigrain · Robert Samoilescu -
2019 Poster: A unified variance-reduced accelerated gradient method for convex optimization »
Guanghui Lan · Zhize Li · Yi Zhou -
2018 Demonstration: Game for Detecting Backdoor Attacks on Deep Neural Networks using Activation Clustering »
Casey Dugan · Werner Geyer · Narendra Nath Joshi · Ingrid Lange · Dustin Ramsey Torres · Bryant Chen · Nathalie Baracaldo · Heiko Ludwig