Timezone: »
In this work, we investigate the possibility of using denoising diffusion models to learn priors for online decision making problems. Our special focus is on the meta-learning for bandit framework, with the goal of learning a strategy that performs well across bandit tasks of a same class. To this end, we train a diffusion model that learns the underlying task distribution and combine Thompson sampling with the learned prior to deal with new task at test time. Our posterior sampling algorithm is designed to carefully balance between the learned prior and the noisy observations that come from the learner's interaction with the environment. Preliminary experiments clearly demonstrate the potential of the considered approach.
Author Information
Yu-Guan Hsieh (Université Grenoble Alpes / Inria)
Shiva Kasiviswanathan (Amazon)
Branislav Kveton (Amazon)
Patrick Blöbaum (Amazon)
More from the Same Authors
-
2021 : Reconstructing Test Labels from Noisy Loss Scores (Extended Abstract) »
Abhinav Aggarwal · Shiva Kasiviswanathan · Zekun Xu · Oluwaseyi Feyisetan · Nathanael Teissier -
2022 Poster: No-regret learning in games with noisy feedback: Faster rates and adaptivity via learning rate separation »
Yu-Guan Hsieh · Kimon Antonakopoulos · Volkan Cevher · Panayotis Mertikopoulos -
2022 Poster: Uplifting Bandits »
Yu-Guan Hsieh · Shiva Kasiviswanathan · Branislav Kveton -
2021 Poster: No Regrets for Learning the Prior in Bandits »
Soumya Basu · Branislav Kveton · Manzil Zaheer · Csaba Szepesvari -
2021 Poster: Collaborative Causal Discovery with Atomic Interventions »
Raghavendra Addanki · Shiva Kasiviswanathan -
2020 Poster: Explore Aggressively, Update Conservatively: Stochastic Extragradient Methods with Variable Stepsize Scaling »
Yu-Guan Hsieh · Franck Iutzeler · Jérôme Malick · Panayotis Mertikopoulos -
2020 Spotlight: Explore Aggressively, Update Conservatively: Stochastic Extragradient Methods with Variable Stepsize Scaling »
Yu-Guan Hsieh · Franck Iutzeler · Jérôme Malick · Panayotis Mertikopoulos -
2020 Poster: Differentiable Meta-Learning of Bandit Policies »
Craig Boutilier · Chih-wei Hsu · Branislav Kveton · Martin Mladenov · Csaba Szepesvari · Manzil Zaheer -
2020 Poster: Latent Bandits Revisited »
Joey Hong · Branislav Kveton · Manzil Zaheer · Yinlam Chow · Amr Ahmed · Craig Boutilier -
2019 Poster: On the convergence of single-call stochastic extra-gradient methods »
Yu-Guan Hsieh · Franck Iutzeler · Jérôme Malick · Panayotis Mertikopoulos -
2018 Poster: TopRank: A practical algorithm for online stochastic ranking »
Tor Lattimore · Branislav Kveton · Shuai Li · Csaba Szepesvari -
2017 Poster: Online Influence Maximization under Independent Cascade Model with Semi-Bandit Feedback »
Zheng Wen · Branislav Kveton · Michal Valko · Sharan Vaswani -
2015 Poster: Efficient Thompson Sampling for Online Matrix-Factorization Recommendation »
Jaya Kawale · Hung H Bui · Branislav Kveton · Long Tran-Thanh · Sanjay Chawla -
2015 Poster: Combinatorial Cascading Bandits »
Branislav Kveton · Zheng Wen · Azin Ashkan · Csaba Szepesvari -
2012 Poster: Online L1-Dictionary Learning with Application to Novel Document Detection »
Shiva Kasiviswanathan · Huahua Wang · Arindam Banerjee · Prem Melville