Timezone: »
Targeted Separation and Convergence with Kernel Discrepancies
Alessandro Barp · Carl-Johann Simon-Gabriel · Mark Girolami · Lester Mackey
Event URL: https://openreview.net/forum?id=M5xlT_iMmoq »
Kernel Stein discrepancies (KSDs) are maximum mean discrepancies (MMDs) that leverage the score information of distributions, andhave grown central to a wide range of applications. In most settings, these MMDs are required to $(i)$ separate a target $\mathrm{P}$ from other probability measures or even $(ii)$ control weak convergence to $\mathrm{P}$. In this article we derive new sufficient and necessary conditions that substantially broaden the known conditions for KSD separation and convergence control, and develop the first KSDs known to metrize weak convergence to $\mathrm{P}$. Along the way, we highlight the implications of our results for hypothesis testing, measuring and improving sample quality, and sampling with Stein variational gradient descent.
Kernel Stein discrepancies (KSDs) are maximum mean discrepancies (MMDs) that leverage the score information of distributions, andhave grown central to a wide range of applications. In most settings, these MMDs are required to $(i)$ separate a target $\mathrm{P}$ from other probability measures or even $(ii)$ control weak convergence to $\mathrm{P}$. In this article we derive new sufficient and necessary conditions that substantially broaden the known conditions for KSD separation and convergence control, and develop the first KSDs known to metrize weak convergence to $\mathrm{P}$. Along the way, we highlight the implications of our results for hypothesis testing, measuring and improving sample quality, and sampling with Stein variational gradient descent.
Author Information
Alessandro Barp (University of Cambridge)
Carl-Johann Simon-Gabriel (Amazon Web Services)
Mark Girolami (University of Glasgow)
Lester Mackey (Microsoft Research)
More from the Same Authors
-
2021 : Bounding Wasserstein distance with couplings »
Niloy Biswas · Lester Mackey -
2021 : Learned Benchmarks for Subseasonal Forecasting »
Soukayna Mouatadid · Paulo Orenstein · Genevieve Flaspohler · Miruna Oprescu · Judah Cohen · Franklyn Wang · Sean Knight · Maria Geogdzhayeva · Sam Levang · Ernest Fraenkel · Lester Mackey -
2022 : A Finite-Particle Convergence Rate for Stein Variational Gradient Descent »
Jiaxin Shi · Lester Mackey -
2022 : Adaptive Bias Correction for Improved Subseasonal Forecast »
Soukayna Mouatadid · Paulo Orenstein · Genevieve Flaspohler · Judah Cohen · Miruna Oprescu · Ernest Fraenkel · Lester Mackey -
2022 : Adaptive Bias Correction for Improved Subseasonal Forecast »
Soukayna Mouatadid · Paulo Orenstein · Genevieve Flaspohler · Judah Cohen · Miruna Oprescu · Ernest Fraenkel · Lester Mackey -
2023 Poster: Learning Rate Free Bayesian Inference in Constrained Domains »
Louis Sharrock · Lester Mackey · Christopher Nemeth -
2023 Poster: Should I Stop or Should I Go: Early Stopping with Heterogeneous Populations »
Hammaad Adam · Fan Yin · Huibin Hu · Neil Tenenholtz · Lorin Crawford · Lester Mackey · Allison Koenecke -
2023 Poster: A Finite-Particle Convergence Rate for Stein Variational Gradient Descent »
Jiaxin Shi · Lester Mackey -
2023 Poster: SubseasonalClimateUSA: A Dataset for Subseasonal Forecasting and Benchmarking »
Soukayna Mouatadid · Paulo Orenstein · Genevieve Flaspohler · Miruna Oprescu · Judah Cohen · Franklyn Wang · Sean Knight · Maria Geogdzhayeva · Sam Levang · Ernest Fraenkel · Lester Mackey -
2022 : Adaptive Bias Correction for Improved Subseasonal Forecast »
Soukayna Mouatadid · Paulo Orenstein · Genevieve Flaspohler · Judah Cohen · Miruna Oprescu · Ernest Fraenkel · Lester Mackey -
2022 Spotlight: Lightning Talks 1B-4 »
Andrei Atanov · Shiqi Yang · Wanshan Li · Yongchang Hao · Ziquan Liu · Jiaxin Shi · Anton Plaksin · Jiaxiang Chen · Ziqi Pan · yaxing wang · Yuxin Liu · Stepan Martyanov · Alessandro Rinaldo · Yuhao Zhou · Li Niu · Qingyuan Yang · Andrei Filatov · Yi Xu · Liqing Zhang · Lili Mou · Ruomin Huang · Teresa Yeo · kai wang · Daren Wang · Jessica Hwang · Yuanhong Xu · Qi Qian · Hu Ding · Michalis Titsias · Shangling Jui · Ajay Sohmshetty · Lester Mackey · Joost van de Weijer · Hao Li · Amir Zamir · Xiangyang Ji · Antoni Chan · Rong Jin -
2022 Spotlight: Gradient Estimation with Discrete Stein Operators »
Jiaxin Shi · Yuhao Zhou · Jessica Hwang · Michalis Titsias · Lester Mackey -
2022 Poster: Assaying Out-Of-Distribution Generalization in Transfer Learning »
Florian Wenzel · Andrea Dittadi · Peter Gehler · Carl-Johann Simon-Gabriel · Max Horn · Dominik Zietlow · David Kernert · Chris Russell · Thomas Brox · Bernt Schiele · Bernhard Schölkopf · Francesco Locatello -
2022 Poster: Gradient Estimation with Discrete Stein Operators »
Jiaxin Shi · Yuhao Zhou · Jessica Hwang · Michalis Titsias · Lester Mackey -
2021 : Invited Talk 5 Q&A »
Lester Mackey -
2021 : Your Model is Wrong (but Might Still Be Useful) »
Lester Mackey -
2021 : Learned Benchmarks for Subseasonal Forecasting »
Soukayna Mouatadid · Paulo Orenstein · Genevieve Flaspohler · Miruna Oprescu · Judah Cohen · Franklyn Wang · Sean Knight · Maria Geogdzhayeva · Sam Levang · Ernest Fraenkel · Lester Mackey -
2020 Poster: Stochastic Stein Discrepancies »
Jackson Gorham · Anant Raj · Lester Mackey -
2020 Poster: Minimax Estimation of Conditional Moment Models »
Nishanth Dikkala · Greg Lewis · Lester Mackey · Vasilis Syrgkanis -
2020 Poster: Cross-validation Confidence Intervals for Test Error »
Pierre Bayle · Alexandre Bayle · Lucas Janson · Lester Mackey -
2019 : Lester Mackey (Microsoft Research and Stanford) »
Lester Mackey -
2019 : Climate Change: A Grand Challenge for ML »
Yoshua Bengio · Carla Gomes · Andrew Ng · Jeff Dean · Lester Mackey -
2019 Poster: Minimum Stein Discrepancy Estimators »
Alessandro Barp · Francois-Xavier Briol · Andrew Duncan · Mark Girolami · Lester Mackey -
2019 Poster: Accelerating Rescaled Gradient Descent: Fast Optimization of Smooth Functions »
Ashia Wilson · Lester Mackey · Andre Wibisono -
2019 Poster: Stochastic Runge-Kutta Accelerates Langevin Monte Carlo and Beyond »
Xuechen (Chen) Li · Denny Wu · Lester Mackey · Murat Erdogdu -
2019 Spotlight: Stochastic Runge-Kutta Accelerates Langevin Monte Carlo and Beyond »
Xuechen (Chen) Li · Denny Wu · Lester Mackey · Murat Erdogdu -
2018 Poster: Random Feature Stein Discrepancies »
Jonathan Huggins · Lester Mackey -
2018 Poster: Global Non-convex Optimization with Discretized Diffusions »
Murat Erdogdu · Lester Mackey · Ohad Shamir -
2015 Poster: Measuring Sample Quality with Stein's Method »
Jackson Gorham · Lester Mackey -
2015 Spotlight: Measuring Sample Quality with Stein's Method »
Jackson Gorham · Lester Mackey -
2014 Workshop: High-energy particle physics, machine learning, and the HiggsML data challenge (HEPML) »
Glen Cowan · Balázs Kégl · Kyle Cranmer · Gábor Melis · Tim Salimans · Vladimir Vava Gligorov · Daniel Whiteson · Lester Mackey · Wojciech Kotlowski · Roberto Díaz Morales · Pierre Baldi · Cecile Germain · David Rousseau · Isabelle Guyon · Tianqi Chen