Timezone: »
Generative models based on denoising diffusion techniques have led to an unprecedented increase in the quality and diversity of imagery that is now possible to create with neural generative models. However, most contemporary state-of-the-art methods are derived from a standard isotropic Gaussian formulation. In this work we examine the situation where non-isotropic Gaussian distributions are used. We present the key mathematical derivations for creating denoising diffusion models using an underlying non-isotropic Gaussian noise model. We also provide initial experiments to help verify empirically that this more general modelling approach can also yield high-quality samples.
Author Information
Vikram Voleti (Meta AI, Mila, University of Montreal)
I am a PhD candidate at Mila, University of Montreal, and a Research Intern at Meta AI. I work on generative models of images, 3D and video. My recent work is on score-based denoising diffusion model for video prediction, generation and interpolation.
Chris Pal (Montreal Institute for Learning Algorithms, École Polytechnique, Université de Montréal)
Adam Oberman (McGill University)
More from the Same Authors
-
2021 : Systematic Evaluation of Causal Discovery in Visual Model Based Reinforcement Learning »
Nan Rosemary Ke · Aniket Didolkar · Sarthak Mittal · Anirudh Goyal · Guillaume Lajoie · Stefan Bauer · Danilo Jimenez Rezende · Yoshua Bengio · Chris Pal · Michael Mozer -
2021 : Beyond Target Networks: Improving Deep $Q$-learning with Functional Regularization »
Alexandre Piche · Joseph Marino · Gian Maria Marconi · Valentin Thomas · Chris Pal · Mohammad Emtiyaz Khan -
2022 : A Reproducible and Realistic Evaluation of Partial Domain Adaptation Methods »
Tiago Salvador · Kilian FATRAS · Ioannis Mitliagkas · Adam Oberman -
2022 : Implicit Offline Reinforcement Learning via Supervised Learning »
Alexandre Piche · Rafael Pardinas · David Vazquez · Igor Mordatch · Igor Mordatch · Chris Pal -
2022 : A General-Purpose Neural Architecture for Geospatial Systems »
Martin Weiss · Nasim Rahaman · Frederik Träuble · Francesco Locatello · Alexandre Lacoste · Yoshua Bengio · Erran Li Li · Chris Pal · Bernhard Schölkopf -
2022 Poster: Attention-based Neural Cellular Automata »
Mattie Tesfaldet · Derek Nowrouzezahrai · Chris Pal -
2022 Poster: Neural Attentive Circuits »
Martin Weiss · Nasim Rahaman · Francesco Locatello · Chris Pal · Yoshua Bengio · Bernhard Schölkopf · Erran Li Li · Nicolas Ballas -
2022 Poster: MCVD - Masked Conditional Video Diffusion for Prediction, Generation, and Interpolation »
Vikram Voleti · Alexia Jolicoeur-Martineau · Chris Pal -
2020 Poster: Measuring Systematic Generalization in Neural Proof Generation with Transformers »
Nicolas Gontier · Koustuv Sinha · Siva Reddy · Chris Pal -
2019 : Poster Session »
Rishav Chourasia · Yichong Xu · Corinna Cortes · Chien-Yi Chang · Yoshihiro Nagano · So Yeon Min · Benedikt Boecking · Phi Vu Tran · Kamyar Ghasemipour · Qianggang Ding · Shouvik Mani · Vikram Voleti · Rasool Fakoor · Miao Xu · Kenneth Marino · Lisa Lee · Volker Tresp · Jean-Francois Kagy · Marvin Zhang · Barnabas Poczos · Dinesh Khandelwal · Adrien Bardes · Evan Shelhamer · Jiacheng Zhu · Ziming Li · Xiaoyan Li · Dmitrii Krasheninnikov · Ruohan Wang · Mayoore Jaiswal · Emad Barsoum · Suvansh Sanjeev · Theeraphol Wattanavekin · Qizhe Xie · Sifan Wu · Yuki Yoshida · David Kanaa · Sina Khoshfetrat Pakazad · Mehdi Maasoumy -
2019 Poster: Real-Time Reinforcement Learning »
Simon Ramstedt · Chris Pal -
2014 Workshop: Optimal Transport and Machine Learning »
Marco Cuturi · Gabriel Peyré · Justin Solomon · Alexander Barvinok · Piotr Indyk · Robert McCann · Adam Oberman