Timezone: »
Graph neural networks (GNNs) are the primary tool for processing graph-structured data. Unfortunately, the most commonly used GNNs, called Message Passing Neural Networks (MPNNs) suffer from several fundamental limitations. To overcome these limitations, recent works have adapted the idea of positional encodings to graph data. This paper draws inspiration from the recent success of Laplacian-based positional encoding and defines a novel family of positional encoding schemes for graphs. We accomplish this by generalizing the optimization problem that defines the Laplace embedding to more general dissimilarity functions rather than the 2-norm used in the original formulation. This family of positional encodings is then instantiated by considering p-norms. We discuss a method for calculating these positional encoding schemes, implement it in PyTorch and demonstrate how the resulting positional encoding captures different properties of the graph. Furthermore, we demonstrate that this novel family of positional encodings can improve the expressive power of MPNNs. Lastly, we present preliminary experimental results.
Author Information
Sohir Maskey (Ludwig-Maximilians University of Munich)
Ali Parviz (New Jersey Institute of technology)
Maximilian Thiessen (TU Wien)
Hannes Stärk (MIT)

I am a first-year PhD student at MIT in the CS and AI Laboratory (CSAIL) co-advised by Tommi Jaakkola and Regina Barzilay. I work on geometric deep learning and physics-inspired ML and applications in molecular biology and other physical systems.
Ylli Sadikaj (Universität Vienna)
Haggai Maron (NVIDIA Research)
I am a PhD student at the Department of Computer Science and Applied Mathematics at the Weizmann Institute of Science under the supervision of Prof. Yaron Lipman. My main fields of interest are machine learning, optimization and shape analysis. More specifically I am working on applying deep learning to irregular domains (e.g., graphs, point clouds, and surfaces) and graph/shape matching problems. I serve as a reviewer for NeurIPS, ICCV, SIGGRAPH, SIGGRAPH Asia, ACM TOG, JAIR, TVCG and SGP.
More from the Same Authors
-
2021 : 3D Pre-training improves GNNs for Molecular Property Prediction »
Hannes Stärk · Dominique Beaini · Gabriele Corso · Prudencio Tossou · Christian Dallago · Stephan Günnemann · Pietro Lió -
2021 : 3D Pre-training improves GNNs for Molecular Property Prediction »
Hannes Stärk · Gabriele Corso · Christian Dallago · Stephan Günnemann · Pietro Lió -
2022 : DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking »
Gabriele Corso · Hannes Stärk · Bowen Jing · Regina Barzilay · Tommi Jaakkola -
2022 : Equivariant 3D-Conditional Diffusion Models for Molecular Linker Design »
Ilia Igashov · Hannes Stärk · Clément Vignac · Victor Garcia Satorras · Pascal Frossard · Max Welling · Michael Bronstein · Bruno Correia -
2022 : DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking »
Gabriele Corso · Hannes Stärk · Bowen Jing · Regina Barzilay · Tommi Jaakkola -
2022 : DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking »
Gabriele Corso · Hannes Stärk · Bowen Jing · Regina Barzilay · Tommi Jaakkola -
2022 : Molecular Docking with Diffusion Generative Models »
Gabriele Corso · Hannes Stärk · Bowen Jing · Regina Barzilay · Tommi Jaakkola -
2022 : Expectation Complete Graph Representations using Graph Homomorphisms »
Maximilian Thiessen · Pascal Welke · Thomas Gärtner -
2022 : DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking »
Gabriele Corso · Hannes Stärk · Bowen Jing · Regina Barzilay · Tommi Jaakkola -
2022 Poster: Active Learning of Classifiers with Label and Seed Queries »
Marco Bressan · Nicolò Cesa-Bianchi · Silvio Lattanzi · Andrea Paudice · Maximilian Thiessen -
2022 Poster: Understanding and Extending Subgraph GNNs by Rethinking Their Symmetries »
Fabrizio Frasca · Beatrice Bevilacqua · Michael Bronstein · Haggai Maron -
2022 Poster: Long Range Graph Benchmark »
Vijay Prakash Dwivedi · Ladislav Rampášek · Michael Galkin · Ali Parviz · Guy Wolf · Anh Tuan Luu · Dominique Beaini -
2022 Poster: Generalization Analysis of Message Passing Neural Networks on Large Random Graphs »
Sohir Maskey · Ron Levie · Yunseok Lee · Gitta Kutyniok -
2021 Poster: Active Learning of Convex Halfspaces on Graphs »
Maximilian Thiessen · Thomas Gaertner -
2020 Poster: Set2Graph: Learning Graphs From Sets »
Hadar Serviansky · Nimrod Segol · Jonathan Shlomi · Kyle Cranmer · Eilam Gross · Haggai Maron · Yaron Lipman -
2019 : Open Challenges - Spotlight Presentations »
Francisco Sumba Toral · Haggai Maron · Arinbjörn Kolbeinsson -
2019 Poster: Controlling Neural Level Sets »
Matan Atzmon · Niv Haim · Lior Yariv · Ofer Israelov · Haggai Maron · Yaron Lipman -
2019 Poster: Provably Powerful Graph Networks »
Haggai Maron · Heli Ben-Hamu · Hadar Serviansky · Yaron Lipman