Timezone: »
We consider a hybrid reinforcement learning setting (Hybrid RL), in which an agent has access to an offline dataset and the ability to collect experience via real-world online interaction. The framework mitigates the challenges that arise in both pure offline and online RL settings, allowing for the design of simple and highly effective algorithms, in both theory and practice. We demonstrate these advantages by adapting the classical Q learning/iteration algorithm to the hybrid setting, which we call Hybrid Q-Learning or Hy-Q. In our theoretical results, we prove that the algorithm is both computationally and statistically efficient whenever the offline dataset supports a high-quality policy and the environment has bounded bilinear rank. Notably, we require no assumptions on the coverage provided by the initial distribution, in contrast with guarantees for policy gradient/iteration methods. In our experimental results, we show that Hy-Q with neural network function approximation outperforms state-of-the-art online, offline, and hybrid RL baselines on challenging benchmarks, including Montezuma’s Revenge.
Author Information
Yuda Song (Carnegie Mellon University)
Yifei Zhou (Department of Computer Science, Cornell University)
Ayush Sekhari (Cornell University)
J. Bagnell (Carnegie Mellon University)
Akshay Krishnamurthy (Microsoft)
Wen Sun (Cornell University)
More from the Same Authors
-
2021 Spotlight: Bayesian decision-making under misspecified priors with applications to meta-learning »
Max Simchowitz · Christopher Tosh · Akshay Krishnamurthy · Daniel Hsu · Thodoris Lykouris · Miro Dudik · Robert Schapire -
2021 : Pessimistic Model-based Offline Reinforcement Learning under Partial Coverage »
Masatoshi Uehara · Wen Sun -
2021 : Offline Reinforcement Learning: Fundamental Barriers for Value Function Approximation »
Dylan Foster · Akshay Krishnamurthy · David Simchi-Levi · Yunzong Xu -
2022 : Provable Benefits of Representational Transfer in Reinforcement Learning »
Alekh Agarwal · Yuda Song · Kaiwen Wang · Mengdi Wang · Wen Sun · Xuezhou Zhang -
2022 : Hidden Poison: Machine Unlearning Enables Camouflaged Poisoning Attacks »
Jimmy Di · Jack Douglas · Jayadev Acharya · Gautam Kamath · Ayush Sekhari -
2022 : Hidden Poison: Machine unlearning enables camouflaged poisoning attacks »
Jimmy Di · Jack Douglas · Jayadev Acharya · Gautam Kamath · Ayush Sekhari -
2022 Panel: Panel 4A-2: Adaptively Exploiting d-Separators… & On the Complexity… »
Blair Bilodeau · Ayush Sekhari -
2022 Poster: Provably Efficient Reinforcement Learning in Partially Observable Dynamical Systems »
Masatoshi Uehara · Ayush Sekhari · Jason Lee · Nathan Kallus · Wen Sun -
2022 Poster: On the Statistical Efficiency of Reward-Free Exploration in Non-Linear RL »
Jinglin Chen · Aditya Modi · Akshay Krishnamurthy · Nan Jiang · Alekh Agarwal -
2022 Poster: Sequence Model Imitation Learning with Unobserved Contexts »
Gokul Swamy · Sanjiban Choudhury · J. Bagnell · Steven Wu -
2022 Poster: GAPX: Generalized Autoregressive Paraphrase-Identification X »
Yifei Zhou · Renyu Li · Hayden Housen · Ser Nam Lim -
2022 Poster: From Gradient Flow on Population Loss to Learning with Stochastic Gradient Descent »
Christopher De Sa · Satyen Kale · Jason Lee · Ayush Sekhari · Karthik Sridharan -
2022 Poster: On the Complexity of Adversarial Decision Making »
Dylan J Foster · Alexander Rakhlin · Ayush Sekhari · Karthik Sridharan -
2022 Poster: Minimax Optimal Online Imitation Learning via Replay Estimation »
Gokul Swamy · Nived Rajaraman · Matt Peng · Sanjiban Choudhury · J. Bagnell · Steven Wu · Jiantao Jiao · Kannan Ramchandran -
2021 : Representation Learning for Online and Offline RL in Low-rank MDPs »
Masatoshi Uehara · Xuezhou Zhang · Wen Sun -
2021 : Contributed Talk 3: Offline Reinforcement Learning: Fundamental Barriers for Value Function Approximation »
Yunzong Xu · Akshay Krishnamurthy · David Simchi-Levi -
2021 : Representation Learning for Online and Offline RL in Low-rank MDPs »
Masatoshi Uehara · Xuezhou Zhang · Wen Sun -
2021 : Q/A Session »
Wen Sun · Shixia Liu -
2021 : Speaker Introduction »
Wen Sun -
2021 Workshop: eXplainable AI approaches for debugging and diagnosis »
Roberto Capobianco · Biagio La Rosa · Leilani Gilpin · Wen Sun · Alice Xiang · Alexander Feldman -
2021 Poster: Gone Fishing: Neural Active Learning with Fisher Embeddings »
Jordan Ash · Surbhi Goel · Akshay Krishnamurthy · Sham Kakade -
2021 Oral: Efficient First-Order Contextual Bandits: Prediction, Allocation, and Triangular Discrimination »
Dylan Foster · Akshay Krishnamurthy -
2021 Poster: Efficient First-Order Contextual Bandits: Prediction, Allocation, and Triangular Discrimination »
Dylan Foster · Akshay Krishnamurthy -
2021 Poster: Bayesian decision-making under misspecified priors with applications to meta-learning »
Max Simchowitz · Christopher Tosh · Akshay Krishnamurthy · Daniel Hsu · Thodoris Lykouris · Miro Dudik · Robert Schapire -
2020 Poster: Provably adaptive reinforcement learning in metric spaces »
Tongyi Cao · Akshay Krishnamurthy -
2020 Poster: Efficient Contextual Bandits with Continuous Actions »
Maryam Majzoubi · Chicheng Zhang · Rajan Chari · Akshay Krishnamurthy · John Langford · Aleksandrs Slivkins -
2020 Poster: FLAMBE: Structural Complexity and Representation Learning of Low Rank MDPs »
Alekh Agarwal · Sham Kakade · Akshay Krishnamurthy · Wen Sun -
2020 Poster: Learning the Linear Quadratic Regulator from Nonlinear Observations »
Zakaria Mhammedi · Dylan Foster · Max Simchowitz · Dipendra Misra · Wen Sun · Akshay Krishnamurthy · Alexander Rakhlin · John Langford -
2020 Poster: Sample-Efficient Reinforcement Learning of Undercomplete POMDPs »
Chi Jin · Sham Kakade · Akshay Krishnamurthy · Qinghua Liu -
2020 Spotlight: Sample-Efficient Reinforcement Learning of Undercomplete POMDPs »
Chi Jin · Sham Kakade · Akshay Krishnamurthy · Qinghua Liu -
2020 Oral: FLAMBE: Structural Complexity and Representation Learning of Low Rank MDPs »
Alekh Agarwal · Sham Kakade · Akshay Krishnamurthy · Wen Sun -
2020 Poster: Information Theoretic Regret Bounds for Online Nonlinear Control »
Sham Kakade · Akshay Krishnamurthy · Kendall Lowrey · Motoya Ohnishi · Wen Sun -
2019 Poster: Sample Complexity of Learning Mixture of Sparse Linear Regressions »
Akshay Krishnamurthy · Arya Mazumdar · Andrew McGregor · Soumyabrata Pal -
2019 Poster: Model Selection for Contextual Bandits »
Dylan Foster · Akshay Krishnamurthy · Haipeng Luo -
2019 Spotlight: Model Selection for Contextual Bandits »
Dylan Foster · Akshay Krishnamurthy · Haipeng Luo -
2018 Poster: Contextual bandits with surrogate losses: Margin bounds and efficient algorithms »
Dylan Foster · Akshay Krishnamurthy -
2018 Poster: Dual Policy Iteration »
Wen Sun · Geoffrey Gordon · Byron Boots · J. Bagnell -
2018 Poster: On Oracle-Efficient PAC RL with Rich Observations »
Christoph Dann · Nan Jiang · Akshay Krishnamurthy · Alekh Agarwal · John Langford · Robert Schapire -
2018 Spotlight: On Oracle-Efficient PAC RL with Rich Observations »
Christoph Dann · Nan Jiang · Akshay Krishnamurthy · Alekh Agarwal · John Langford · Robert Schapire -
2017 Poster: Off-policy evaluation for slate recommendation »
Adith Swaminathan · Akshay Krishnamurthy · Alekh Agarwal · Miro Dudik · John Langford · Damien Jose · Imed Zitouni -
2017 Oral: Off-policy evaluation for slate recommendation »
Adith Swaminathan · Akshay Krishnamurthy · Alekh Agarwal · Miro Dudik · John Langford · Damien Jose · Imed Zitouni -
2017 Poster: Predictive-State Decoders: Encoding the Future into Recurrent Networks »
Arun Venkatraman · Nicholas Rhinehart · Wen Sun · Lerrel Pinto · Martial Hebert · Byron Boots · Kris Kitani · J. Bagnell