Timezone: »
Federated learning has emerged as the predominant framework for distributed machine learning over decentralized data, e.g. in mobile phones. The usual approaches suffer from a distribution shift: the model is trained to fit the average population distribution but is deployed on individual clients, whose data distributions can be quite different. We present a distributionally robust approach to federated learning based on a risk measure known as the superquantile and show how to optimize it by interleaving federated averaging steps with quantile computation. We demonstrate experimentally that our approach is competitive with usual ones in terms of average error and outperforms them in terms of tail statistics of the error.
Author Information
Krishna Pillutla (Google Research)
Yassine Laguel (Rutgers University, Newark)
Jérôme Malick (CNRS and LJK)
Zaid Harchaoui (University of Washington)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 : Tackling Distribution Shifts in Federated Learning with Superquantile Aggregation »
Sat. Dec 3rd 09:00 -- 09:10 PM Room
More from the Same Authors
-
2022 : On the Global Convergence of the Regularized Generalized Gauss-Newton Algorithm »
Vincent Roulet · Maryam Fazel · Siddhartha Srinivasa · Zaid Harchaoui -
2022 : The Trade-offs of Incremental Linearization Algorithms for Nonsmooth Composite Problems »
Krishna Pillutla · Vincent Roulet · Sham Kakade · Zaid Harchaoui -
2022 : Differentially Private Federated Quantiles with the Distributed Discrete Gaussian Mechanism »
Krishna Pillutla · Yassine Laguel · Jérôme Malick · Zaid Harchaoui -
2022 : Likelihood Score under Generalized Self-Concordance »
Lang Liu · Zaid Harchaoui -
2021 Poster: Divergence Frontiers for Generative Models: Sample Complexity, Quantization Effects, and Frontier Integrals »
Lang Liu · Krishna Pillutla · Sean Welleck · Sewoong Oh · Yejin Choi · Zaid Harchaoui -
2021 Poster: LLC: Accurate, Multi-purpose Learnt Low-dimensional Binary Codes »
Aditya Kusupati · Matthew Wallingford · Vivek Ramanujan · Raghav Somani · Jae Sung Park · Krishna Pillutla · Prateek Jain · Sham Kakade · Ali Farhadi -
2021 Poster: MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers »
Krishna Pillutla · Swabha Swayamdipta · Rowan Zellers · John Thickstun · Sean Welleck · Yejin Choi · Zaid Harchaoui -
2021 Oral: MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers »
Krishna Pillutla · Swabha Swayamdipta · Rowan Zellers · John Thickstun · Sean Welleck · Yejin Choi · Zaid Harchaoui -
2020 Poster: Explore Aggressively, Update Conservatively: Stochastic Extragradient Methods with Variable Stepsize Scaling »
Yu-Guan Hsieh · Franck Iutzeler · Jérôme Malick · Panayotis Mertikopoulos -
2020 Spotlight: Explore Aggressively, Update Conservatively: Stochastic Extragradient Methods with Variable Stepsize Scaling »
Yu-Guan Hsieh · Franck Iutzeler · Jérôme Malick · Panayotis Mertikopoulos -
2019 Poster: On the convergence of single-call stochastic extra-gradient methods »
Yu-Guan Hsieh · Franck Iutzeler · Jérôme Malick · Panayotis Mertikopoulos -
2018 : Coffee break + posters 2 »
Jan Kremer · Erik McDermott · Brandon Carter · Albert Zeyer · Andreas Krug · Paul Pu Liang · Katherine Lee · Dominika Basaj · Abelino Jimenez · Lisa Fan · Gautam Bhattacharya · Tzeviya S Fuchs · David Gifford · Loren Lugosch · Orhan Firat · Benjamin Baer · JAHANGIR ALAM · Jamin Shin · Mirco Ravanelli · Paul Smolensky · Zining Zhu · Hamid Eghbal-zadeh · Skyler Seto · Imran Sheikh · Joao Felipe Santos · Yonatan Belinkov · Nadir Durrani · Oiwi Parker Jones · Shuai Tang · André Merboldt · Titouan Parcollet · Wei-Ning Hsu · Krishna Pillutla · Ehsan Hosseini-Asl · Monica Dinculescu · Alexander Amini · Ying Zhang · Taoli Cheng · Alain Tapp -
2018 : Coffee break + posters 1 »
Samuel Myer · Wei-Ning Hsu · Jialu Li · Monica Dinculescu · Lea Schönherr · Ehsan Hosseini-Asl · Skyler Seto · Oiwi Parker Jones · Imran Sheikh · Thomas Manzini · Yonatan Belinkov · Nadir Durrani · Alexander Amini · Johanna Hansen · Gabi Shalev · Jamin Shin · Paul Smolensky · Lisa Fan · Zining Zhu · Hamid Eghbal-zadeh · Benjamin Baer · Abelino Jimenez · Joao Felipe Santos · Jan Kremer · Erik McDermott · Andreas Krug · Tzeviya S Fuchs · Shuai Tang · Brandon Carter · David Gifford · Albert Zeyer · André Merboldt · Krishna Pillutla · Katherine Lee · Titouan Parcollet · Orhan Firat · Gautam Bhattacharya · JAHANGIR ALAM · Mirco Ravanelli -
2018 Poster: A Smoother Way to Train Structured Prediction Models »
Krishna Pillutla · Vincent Roulet · Sham Kakade · Zaid Harchaoui