Timezone: »
Theory and Algorithm for Batch Distribution Drift Problems
Pranjal Awasthi · Corinna Cortes · Christopher Mohri
Event URL: https://openreview.net/forum?id=a25wNnTrXl »
We study a problem of gradual \emph{batch distribution drift} motivated by several applications, which consists of determining an accurate predictor for a target time segment, for which a moderate amount of labeled samples are at one's disposal, while leveraging past segments for which substantially more labeled samples are available. We give new algorithms for this problem guided by a new theoretical analysis and generalization bounds derived for this scenario. Additionally, we report the results of extensive experiments demonstrating the benefits of our drifting algorithm, including comparisons with natural baselines.
Author Information
Pranjal Awasthi (Google)
Corinna Cortes (Google Research)
Christopher Mohri (Cornell University)
More from the Same Authors
-
2021 Spotlight: On the Existence of The Adversarial Bayes Classifier »
Pranjal Awasthi · Natalie Frank · Mehryar Mohri -
2021 Spotlight: Calibration and Consistency of Adversarial Surrogate Losses »
Pranjal Awasthi · Natalie Frank · Anqi Mao · Mehryar Mohri · Yutao Zhong -
2022 : A Theory of Learning with Competing Objectives and User Feedback »
Pranjal Awasthi · Corinna Cortes · Yishay Mansour · Mehryar Mohri -
2022 : AdaME: Adaptive learning of multisource adaptationensembles »
Scott Yak · Javier Gonzalvo · Mehryar Mohri · Corinna Cortes -
2022 : A Theory of Learning with Competing Objectives and User Feedback »
Pranjal Awasthi · Corinna Cortes · Yishay Mansour · Mehryar Mohri -
2022 : A Theory of Learning with Competing Objectives and User Feedback »
Pranjal Awasthi · Corinna Cortes · Yishay Mansour · Mehryar Mohri -
2022 Poster: On the Adversarial Robustness of Mixture of Experts »
Joan Puigcerver · Rodolphe Jenatton · Carlos Riquelme · Pranjal Awasthi · Srinadh Bhojanapalli -
2022 Poster: Trimmed Maximum Likelihood Estimation for Robust Generalized Linear Model »
Pranjal Awasthi · Abhimanyu Das · Weihao Kong · Rajat Sen -
2022 Poster: Multi-Class $H$-Consistency Bounds »
Pranjal Awasthi · Anqi Mao · Mehryar Mohri · Yutao Zhong -
2022 Poster: Semi-supervised Active Linear Regression »
Nived Rajaraman · Fnu Devvrit · Pranjal Awasthi -
2021 Poster: On the Existence of The Adversarial Bayes Classifier »
Pranjal Awasthi · Natalie Frank · Mehryar Mohri -
2021 Poster: Efficient Algorithms for Learning Depth-2 Neural Networks with General ReLU Activations »
Pranjal Awasthi · Alex Tang · Aravindan Vijayaraghavan -
2021 Poster: Boosting with Multiple Sources »
Corinna Cortes · Mehryar Mohri · Dmitry Storcheus · Ananda Theertha Suresh -
2021 Poster: Neural Active Learning with Performance Guarantees »
Zhilei Wang · Pranjal Awasthi · Christoph Dann · Ayush Sekhari · Claudio Gentile -
2021 Poster: A Convergence Analysis of Gradient Descent on Graph Neural Networks »
Pranjal Awasthi · Abhimanyu Das · Sreenivas Gollapudi -
2021 Poster: Calibration and Consistency of Adversarial Surrogate Losses »
Pranjal Awasthi · Natalie Frank · Anqi Mao · Mehryar Mohri · Yutao Zhong -
2020 Poster: Agnostic Learning with Multiple Objectives »
Corinna Cortes · Mehryar Mohri · Javier Gonzalvo · Dmitry Storcheus -
2019 : Poster Session »
Rishav Chourasia · Yichong Xu · Corinna Cortes · Chien-Yi Chang · Yoshihiro Nagano · So Yeon Min · Benedikt Boecking · Phi Vu Tran · Kamyar Ghasemipour · Qianggang Ding · Shouvik Mani · Vikram Voleti · Rasool Fakoor · Miao Xu · Kenneth Marino · Lisa Lee · Volker Tresp · Jean-Francois Kagy · Marvin Zhang · Barnabas Poczos · Dinesh Khandelwal · Adrien Bardes · Evan Shelhamer · Jiacheng Zhu · Ziming Li · Xiaoyan Li · Dmitrii Krasheninnikov · Ruohan Wang · Mayoore Jaiswal · Emad Barsoum · Suvansh Sanjeev · Theeraphol Wattanavekin · Qizhe Xie · Sifan Wu · Yuki Yoshida · David Kanaa · Sina Khoshfetrat Pakazad · Mehdi Maasoumy -
2019 Poster: Learning GANs and Ensembles Using Discrepancy »
Ben Adlam · Corinna Cortes · Mehryar Mohri · Ningshan Zhang -
2019 Poster: Regularized Gradient Boosting »
Corinna Cortes · Mehryar Mohri · Dmitry Storcheus -
2018 Poster: Efficient Gradient Computation for Structured Output Learning with Rational and Tropical Losses »
Corinna Cortes · Vitaly Kuznetsov · Mehryar Mohri · Dmitry Storcheus · Scott Yang -
2016 Poster: Structured Prediction Theory Based on Factor Graph Complexity »
Corinna Cortes · Vitaly Kuznetsov · Mehryar Mohri · Scott Yang -
2016 Poster: Boosting with Abstention »
Corinna Cortes · Giulia DeSalvo · Mehryar Mohri -
2013 Poster: Learning Kernels Using Local Rademacher Complexity »
Corinna Cortes · Marius Kloft · Mehryar Mohri -
2013 Spotlight: Learning Kernels Using Local Rademacher Complexity »
Corinna Cortes · Marius Kloft · Mehryar Mohri -
2013 Session: Oral Session 6 »
Corinna Cortes -
2012 Poster: Accuracy at the Top »
Stephen Boyd · Corinna Cortes · Mehryar Mohri · Ana Radovanovic -
2011 Workshop: Domain Adaptation Workshop: Theory and Application »
John Blitzer · Corinna Cortes · Afshin Rostamizadeh -
2010 Poster: Learning Bounds for Importance Weighting »
Corinna Cortes · Yishay Mansour · Mehryar Mohri -
2009 Poster: Learning Non-Linear Combinations of Kernels »
Corinna Cortes · Mehryar Mohri · Afshin Rostamizadeh -
2009 Poster: Polynomial Semantic Indexing »
Bing Bai · Jason E Weston · David Grangier · Ronan Collobert · Kunihiko Sadamasa · Yanjun Qi · Corinna Cortes · Mehryar Mohri -
2008 Workshop: Kernel Learning: Automatic Selection of Optimal Kernels »
Corinna Cortes · Arthur Gretton · Gert Lanckriet · Mehryar Mohri · Afshin Rostamizadeh -
2007 Workshop: Efficient Machine Learning - Overcoming Computational Bottlenecks in Machine Learning (Part 2) »
Samy Bengio · Corinna Cortes · Dennis DeCoste · Francois Fleuret · Ramesh Natarajan · Edwin Pednault · Dan Pelleg · Elad Yom-Tov -
2007 Workshop: Efficient Machine Learning - Overcoming Computational Bottlenecks in Machine Learning (Part 1) »
Samy Bengio · Corinna Cortes · Dennis DeCoste · Francois Fleuret · Ramesh Natarajan · Edwin Pednault · Dan Pelleg · Elad Yom-Tov -
2006 Poster: On Transductive Regression »
Corinna Cortes · Mehryar Mohri