Timezone: »
Many machine learning systems deployed in the real world face the challenge of domain generalization, or generalizing to new domains that have different data distributions. For example, in wildlife conservation, animal classification models can perform poorly on new camera deployments. Across cameras, the data distribution changes along multiple factors, some of which are spurious (e.g., low-level background variations) and others of which are robustly predictive (e.g., habitat type). In this work, we aim to improve out-of-distribution performance by learning models that are invariant to spurious cross-domain variations while preserving predictive cross-domain variations. Specifically, we explore targeted augmentations that rely on prior knowledge to randomize only the spurious cross-domain variations. On iWildCam2020-WILDS and Camelyon17-WILDS, two domain generalization datasets, targeted augmentations outperform the previous state-of-the-art by 3.2% and 14.4% points respectively, suggesting that targeting spurious cross-domain variations using prior knowledge can be an effective route to out-of-distribution robustness.
Author Information
Irena Gao (Stanford University)
Shiori Sagawa (Stanford University)
Pang Wei Koh (Google / University of Washington)
Tatsunori Hashimoto (Stanford)
Percy Liang (Stanford University)
More from the Same Authors
-
2020 : Invited Talk 8 Presentation - Percy Liang - Semantic Parsing for Natural Language Interfaces »
Percy Liang -
2021 : Extending the WILDS Benchmark for Unsupervised Adaptation »
Shiori Sagawa · Pang Wei Koh · Tony Lee · Irena Gao · Sang Michael Xie · Kendrick Shen · Ananya Kumar · Weihua Hu · Michihiro Yasunaga · Henrik Marklund · Sara Beery · Ian Stavness · Jure Leskovec · Kate Saenko · Tatsunori Hashimoto · Sergey Levine · Chelsea Finn · Percy Liang -
2022 : Wild-Time: A Benchmark of in-the-Wild Distribution Shift over Time »
Caroline Choi · Huaxiu Yao · Yoonho Lee · Pang Wei Koh · Chelsea Finn -
2022 : A Closer Look at the Calibration of Differential Private Learners »
Hanlin Zhang · Xuechen (Chen) Li · Prithviraj Sen · Salim Roukos · Tatsunori Hashimoto -
2022 : Surgical Fine-Tuning Improves Adaptation to Distribution Shifts »
Yoonho Lee · Annie Chen · Fahim Tajwar · Ananya Kumar · Huaxiu Yao · Percy Liang · Chelsea Finn -
2022 : Data Feedback Loops: Model-driven Amplification of Dataset Biases »
Rohan Taori · Tatsunori Hashimoto -
2022 : Undersampling is a Minimax Optimal Robustness Intervention in Nonparametric Classification »
Niladri S. Chatterji · Saminul Haque · Tatsunori Hashimoto -
2022 : Surgical Fine-Tuning Improves Adaptation to Distribution Shifts »
Yoonho Lee · Annie Chen · Fahim Tajwar · Ananya Kumar · Huaxiu Yao · Percy Liang · Chelsea Finn -
2022 : Data Feedback Loops: Model-driven Amplification of Dataset Biases »
Rohan Taori · Tatsunori Hashimoto -
2022 : Fine-Tuning without Distortion: Improving Robustness to Distribution Shifts »
Percy Liang · Ananya Kumar -
2022 Workshop: Workshop on Distribution Shifts: Connecting Methods and Applications »
Chelsea Finn · Fanny Yang · Hongseok Namkoong · Masashi Sugiyama · Jacob Eisenstein · Jonas Peters · Rebecca Roelofs · Shiori Sagawa · Pang Wei Koh · Yoonho Lee -
2022 Workshop: MATH-AI: Toward Human-Level Mathematical Reasoning »
Pan Lu · Swaroop Mishra · Sean Welleck · Yuhuai Wu · Hannaneh Hajishirzi · Percy Liang -
2022 Poster: What Can Transformers Learn In-Context? A Case Study of Simple Function Classes »
Shivam Garg · Dimitris Tsipras · Percy Liang · Gregory Valiant -
2022 Poster: Insights into Pre-training via Simpler Synthetic Tasks »
Yuhuai Wu · Felix Li · Percy Liang -
2022 Poster: When Does Differentially Private Learning Not Suffer in High Dimensions? »
Xuechen Li · Daogao Liu · Tatsunori Hashimoto · Huseyin A. Inan · Janardhan Kulkarni · Yin-Tat Lee · Abhradeep Guha Thakurta -
2022 Poster: Factored DRO: Factored Distributionally Robust Policies for Contextual Bandits »
Tong Mu · Yash Chandak · Tatsunori Hashimoto · Emma Brunskill -
2022 Poster: Deep Bidirectional Language-Knowledge Graph Pretraining »
Michihiro Yasunaga · Antoine Bosselut · Hongyu Ren · Xikun Zhang · Christopher D Manning · Percy Liang · Jure Leskovec -
2022 Poster: Decentralized Training of Foundation Models in Heterogeneous Environments »
Binhang Yuan · Yongjun He · Jared Davis · Tianyi Zhang · Tri Dao · Beidi Chen · Percy Liang · Christopher Ré · Ce Zhang -
2022 Poster: Diffusion-LM Improves Controllable Text Generation »
Xiang Li · John Thickstun · Ishaan Gulrajani · Percy Liang · Tatsunori Hashimoto -
2022 Poster: Picking on the Same Person: Does Algorithmic Monoculture lead to Outcome Homogenization? »
Rishi Bommasani · Kathleen A. Creel · Ananya Kumar · Dan Jurafsky · Percy Liang -
2022 Poster: Wild-Time: A Benchmark of in-the-Wild Distribution Shift over Time »
Huaxiu Yao · Caroline Choi · Bochuan Cao · Yoonho Lee · Pang Wei Koh · Chelsea Finn -
2022 Poster: Improving Self-Supervised Learning by Characterizing Idealized Representations »
Yann Dubois · Stefano Ermon · Tatsunori Hashimoto · Percy Liang -
2021 : Panel: Future directions for tackling distribution shifts »
Tatsunori Hashimoto · Jamie Morgenstern · Judy Hoffman · Andrew Beck -
2021 Workshop: Distribution shifts: connecting methods and applications (DistShift) »
Shiori Sagawa · Pang Wei Koh · Fanny Yang · Hongseok Namkoong · Jiashi Feng · Kate Saenko · Percy Liang · Sarah Bird · Sergey Levine -
2021 : Opening remarks »
Shiori Sagawa -
2021 Workshop: CtrlGen: Controllable Generative Modeling in Language and Vision »
Steven Y. Feng · Dor Arad Hudson · Tatsunori Hashimoto · DONGYEOP Kang · Varun Prashant Gangal · Anusha Balakrishnan · Joel Tetreault -
2020 : Invited Talk 8 Q/A - Percy Liang »
Percy Liang -
2020 : WILDS: A Survey and Benchmark of in-the-Wild Distribution Shifts »
Pang Wei Koh -
2020 Poster: Enabling certification of verification-agnostic networks via memory-efficient semidefinite programming »
Sumanth Dathathri · Krishnamurthy Dvijotham · Alexey Kurakin · Aditi Raghunathan · Jonathan Uesato · Rudy Bunel · Shreya Shankar · Jacob Steinhardt · Ian Goodfellow · Percy Liang · Pushmeet Kohli -
2019 : Extended Poster Session »
Travis LaCroix · Marie Ossenkopf · Mina Lee · Nicole Fitzgerald · Daniela Mihai · Jonathon Hare · Ali Zaidi · Alexander Cowen-Rivers · Alana Marzoev · Eugene Kharitonov · Luyao Yuan · Tomasz Korbak · Paul Pu Liang · Yi Ren · Roberto Dessì · Peter Potash · Shangmin Guo · Tatsunori Hashimoto · Percy Liang · Julian Zubek · Zipeng Fu · Song-Chun Zhu · Adam Lerer -
2019 Poster: SPoC: Search-based Pseudocode to Code »
Sumith Kulal · Panupong Pasupat · Kartik Chandra · Mina Lee · Oded Padon · Alex Aiken · Percy Liang -
2019 Poster: On the Accuracy of Influence Functions for Measuring Group Effects »
Pang Wei Koh · Kai-Siang Ang · Hubert Teo · Percy Liang -
2019 Poster: Temporal FiLM: Capturing Long-Range Sequence Dependencies with Feature-Wise Modulations. »
Sawyer Birnbaum · Volodymyr Kuleshov · Zayd Enam · Pang Wei Koh · Stefano Ermon -
2019 Poster: Verified Uncertainty Calibration »
Ananya Kumar · Percy Liang · Tengyu Ma -
2019 Spotlight: Verified Uncertainty Calibration »
Ananya Kumar · Percy Liang · Tengyu Ma -
2018 : Natural Language Supervision »
Percy Liang -
2018 Poster: Uncertainty Sampling is Preconditioned Stochastic Gradient Descent on Zero-One Loss »
Stephen Mussmann · Percy Liang -
2018 Poster: Semidefinite relaxations for certifying robustness to adversarial examples »
Aditi Raghunathan · Jacob Steinhardt · Percy Liang -
2018 Poster: A Retrieve-and-Edit Framework for Predicting Structured Outputs »
Tatsunori Hashimoto · Kelvin Guu · Yonatan Oren · Percy Liang -
2018 Oral: A Retrieve-and-Edit Framework for Predicting Structured Outputs »
Tatsunori Hashimoto · Kelvin Guu · Yonatan Oren · Percy Liang -
2017 : (Invited Talk) Percy Liang: Learning with Adversaries and Collaborators »
Percy Liang -
2017 Demonstration: Babble Labble: Learning from Natural Language Explanations »
Braden Hancock · Paroma Varma · Percy Liang · Christopher Ré · Stephanie Wang -
2017 Poster: Learning Overcomplete HMMs »
Vatsal Sharan · Sham Kakade · Percy Liang · Gregory Valiant -
2017 Poster: Certified Defenses for Data Poisoning Attacks »
Jacob Steinhardt · Pang Wei Koh · Percy Liang -
2017 Poster: Unsupervised Transformation Learning via Convex Relaxations »
Tatsunori Hashimoto · Percy Liang · John Duchi -
2016 Workshop: Deep Learning for Action and Interaction »
Chelsea Finn · Raia Hadsell · David Held · Sergey Levine · Percy Liang -
2016 Workshop: Nonconvex Optimization for Machine Learning: Theory and Practice »
Hossein Mobahi · Anima Anandkumar · Percy Liang · Stefanie Jegelka · Anna Choromanska -
2016 Workshop: Reliable Machine Learning in the Wild »
Dylan Hadfield-Menell · Adrian Weller · David Duvenaud · Jacob Steinhardt · Percy Liang -
2016 Poster: Unsupervised Risk Estimation Using Only Conditional Independence Structure »
Jacob Steinhardt · Percy Liang -
2015 : Sharing the "How" (and not the "What") »
Percy Liang -
2015 Workshop: Non-convex Optimization for Machine Learning: Theory and Practice »
Anima Anandkumar · Niranjan Uma Naresh · Kamalika Chaudhuri · Percy Liang · Sewoong Oh -
2015 Demonstration: CodaLab Worksheets for Reproducible, Executable Papers »
Percy Liang · Evelyne Viegas -
2015 Poster: On-the-Job Learning with Bayesian Decision Theory »
Keenon Werling · Arun Tejasvi Chaganty · Percy Liang · Christopher Manning -
2015 Spotlight: On-the-Job Learning with Bayesian Decision Theory »
Keenon Werling · Arun Tejasvi Chaganty · Percy Liang · Christopher Manning -
2015 Poster: Estimating Mixture Models via Mixtures of Polynomials »
Sida Wang · Arun Tejasvi Chaganty · Percy Liang -
2015 Poster: Learning with Relaxed Supervision »
Jacob Steinhardt · Percy Liang -
2015 Poster: Calibrated Structured Prediction »
Volodymyr Kuleshov · Percy Liang -
2014 Workshop: Challenges in Machine Learning workshop (CiML 2014) »
Isabelle Guyon · Evelyne Viegas · Percy Liang · Olga Russakovsky · Rinat Sergeev · Gábor Melis · Michele Sebag · Gustavo Stolovitzky · Jaume Bacardit · Michael S Kim · Ben Hamner -
2014 Poster: Altitude Training: Strong Bounds for Single-Layer Dropout »
Stefan Wager · William S Fithian · Sida Wang · Percy Liang -
2014 Poster: Simple MAP Inference via Low-Rank Relaxations »
Roy Frostig · Sida Wang · Percy Liang · Christopher D Manning -
2013 Poster: Dropout Training as Adaptive Regularization »
Stefan Wager · Sida Wang · Percy Liang -
2013 Spotlight: Dropout Training as Adaptive Regularization »
Stefan Wager · Sida Wang · Percy Liang -
2012 Poster: Identifiability and Unmixing of Latent Parse Trees »
Percy Liang · Sham M Kakade · Daniel Hsu -
2011 Poster: Sparse Filtering »
Jiquan Ngiam · Pang Wei Koh · Zhenghao Chen · Sonia A Bhaskar · Andrew Y Ng -
2011 Spotlight: Sparse Filtering »
Jiquan Ngiam · Pang Wei Koh · Zhenghao Chen · Sonia A Bhaskar · Andrew Y Ng -
2010 Poster: Tiled convolutional neural networks »
Quoc V. Le · Jiquan Ngiam · Zhenghao Chen · Daniel Jin hao Chia · Pang Wei Koh · Andrew Y Ng -
2009 Workshop: The Generative and Discriminative Learning Interface »
Simon Lacoste-Julien · Percy Liang · Guillaume Bouchard -
2009 Poster: Asymptotically Optimal Regularization in Smooth Parametric Models »
Percy Liang · Francis Bach · Guillaume Bouchard · Michael Jordan -
2008 Workshop: Speech and Language: Unsupervised Latent-Variable Models »
Slav Petrov · Aria Haghighi · Percy Liang · Dan Klein -
2007 Poster: Agreement-Based Learning »
Percy Liang · Dan Klein · Michael Jordan -
2007 Spotlight: Agreement-Based Learning »
Percy Liang · Dan Klein · Michael Jordan -
2007 Poster: A Probabilistic Approach to Language Change »
Alexandre Bouchard-Côté · Percy Liang · Tom Griffiths · Dan Klein