Timezone: »
Recent work has shown the importance of reliability, where model performance is assessed under stress conditions pervasive in real-world deployment. In this work, we examine reliability tasks in the setting of semantic segmentation, a dense output problem that has typically only been evaluated using in-distribution predictive performance---for example, the mean intersection over union score on the Cityscapes validation set. To reduce the gap toward reliable deployment in the real world, we compile a benchmark involving existing (and newly constructed) distribution shifts and metrics. We evaluate current models and several baselines to determine how well segmentation models make robust predictions across multiple types of distribution shift and flag when they don’t know.
Author Information
Estefany Kelly Buchanan (Columbia University)
Michael Dusenberry (Google)
Jie Ren (Google Brain)
Kevin Murphy (Google)
Balaji Lakshminarayanan (Google Brain)
Balaji Lakshminarayanan is a research scientist at Google Brain. Prior to that, he was a research scientist at DeepMind. He received his PhD from the Gatsby Unit, University College London where he worked with Yee Whye Teh. His recent research has focused on probabilistic deep learning, specifically, uncertainty estimation, out-of-distribution robustness and deep generative models. Notable contributions relevant to the tutorial include developing state-of-the-art methods for calibration under dataset shift (such as deep ensembles and AugMix) and showing that deep generative models do not always know what they don't know. He has co-organized several workshops on "Uncertainty and Robustness in deep learning" and served as Area Chair for NeurIPS, ICML, ICLR and AISTATS.
Dustin Tran (Google Brain)
Dustin Tran is a research scientist at Google Brain. His research contributions examine the intersection of probability and deep learning, particularly in the areas of probabilistic programming, variational inference, giant models, and Bayesian neural networks. He completed his Ph.D. at Columbia under David Blei. He’s received awards such as the John M. Chambers Statistical Software award and the Google Ph.D. Fellowship in Machine Learning. He served as Area Chair at NeurIPS, ICML, ICLR, IJCAI, and AISTATS and organized "Approximate Inference" and "Uncertainty & Robustness" workshops at NeurIPS and UAI.
More from the Same Authors
-
2021 : Uncertainty Baselines: Benchmarks for Uncertainty & Robustness in Deep Learning »
Zachary Nado · Neil Band · Mark Collier · Josip Djolonga · Mike Dusenberry · Sebastian Farquhar · Qixuan Feng · Angelos Filos · Marton Havasi · Rodolphe Jenatton · Ghassen Jerfel · Jeremiah Liu · Zelda Mariet · Jeremy Nixon · Shreyas Padhy · Jie Ren · Tim G. J. Rudner · Yeming Wen · Florian Wenzel · Kevin Murphy · D. Sculley · Balaji Lakshminarayanan · Jasper Snoek · Yarin Gal · Dustin Tran -
2022 : Out-of-Distribution Detection and Selective Generation for Conditional Language Models »
Jie Ren · Jiaming Luo · Yao Zhao · Kundan Krishna · Mohammad Saleh · Balaji Lakshminarayanan · Peter Liu -
2022 : Pushing the Accuracy-Fairness Tradeoff Frontier with Introspective Self-play »
Jeremiah Liu · Krishnamurthy Dvijotham · Jihyeon Lee · Quan Yuan · Martin Strobel · Balaji Lakshminarayanan · Deepak Ramachandran -
2022 : The Best Deep Ensembles Sacrifice Predictive Diversity »
Taiga Abe · Estefany Kelly Buchanan · Geoff Pleiss · John Cunningham -
2022 : Improving Zero-shot Generalization and Robustness of Multi-modal Models »
Yunhao Ge · Jie Ren · Ming-Hsuan Yang · Yuxiao Wang · Andrew Gallagher · Hartwig Adam · Laurent Itti · Balaji Lakshminarayanan · Jiaping Zhao -
2022 : Improving the Robustness of Conditional Language Models by Detecting and Removing Input Noise »
Kundan Krishna · Yao Zhao · Jie Ren · Balaji Lakshminarayanan · Jiaming Luo · Mohammad Saleh · Peter Liu -
2022 Workshop: The Symbiosis of Deep Learning and Differential Equations II »
Michael Poli · Winnie Xu · Estefany Kelly Buchanan · Maryam Hosseini · Luca Celotti · Martin Magill · Ermal Rrapaj · Qiyao Wei · Stefano Massaroli · Patrick Kidger · Archis Joglekar · Animesh Garg · David Duvenaud -
2022 : Out-of-Distribution Detection and Selective Generation for Conditional Language Models »
Jie Ren · Jiaming Luo · Yao Zhao · Kundan Krishna · Mohammad Saleh · Balaji Lakshminarayanan · Peter Liu -
2022 Poster: Understanding and Improving Robustness of Vision Transformers through Patch-based Negative Augmentation »
Yao Qin · Chiyuan Zhang · Ting Chen · Balaji Lakshminarayanan · Alex Beutel · Xuezhi Wang -
2022 Poster: Deep Ensembles Work, But Are They Necessary? »
Taiga Abe · Estefany Kelly Buchanan · Geoff Pleiss · Richard Zemel · John Cunningham -
2021 Workshop: The Symbiosis of Deep Learning and Differential Equations »
Luca Celotti · Kelly Buchanan · Jorge Ortiz · Patrick Kidger · Stefano Massaroli · Michael Poli · Lily Hu · Ermal Rrapaj · Martin Magill · Thorsteinn Jonsson · Animesh Garg · Murtadha Aldeer -
2021 Poster: Exploring the Limits of Out-of-Distribution Detection »
Stanislav Fort · Jie Ren · Balaji Lakshminarayanan -
2020 Poster: Deep Graph Pose: a semi-supervised deep graphical model for improved animal pose tracking »
Anqi Wu · Estefany Kelly Buchanan · Matthew Whiteway · Michael Schartner · Guido Meijer · Jean-Paul Noel · Erica Rodriguez · Claire Everett · Amy Norovich · Evan Schaffer · Neeli Mishra · C. Daniel Salzman · Dora Angelaki · Andrés Bendesky · The International Brain Laboratory The International Brain Laboratory · John Cunningham · Liam Paninski -
2020 Tutorial: (Track2) Practical Uncertainty Estimation and Out-of-Distribution Robustness in Deep Learning Q&A »
Dustin Tran · Balaji Lakshminarayanan · Jasper Snoek -
2020 Tutorial: (Track2) Practical Uncertainty Estimation and Out-of-Distribution Robustness in Deep Learning »
Dustin Tran · Balaji Lakshminarayanan · Jasper Snoek -
2019 Poster: Likelihood Ratios for Out-of-Distribution Detection »
Jie Ren · Peter Liu · Emily Fertig · Jasper Snoek · Ryan Poplin · Mark Depristo · Joshua Dillon · Balaji Lakshminarayanan -
2018 : Software Panel »
Ben Letham · David Duvenaud · Dustin Tran · Aki Vehtari -
2017 : 3 spotlight presentations »
Estefany Kelly Buchanan · Mathias Lechner · Kezhi Li -
2017 Poster: Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles »
Balaji Lakshminarayanan · Alexander Pritzel · Charles Blundell -
2017 Spotlight: Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles »
Balaji Lakshminarayanan · Alexander Pritzel · Charles Blundell -
2014 Workshop: 4th Workshop on Automated Knowledge Base Construction (AKBC) »
Sameer Singh · Fabian M Suchanek · Sebastian Riedel · Partha Pratim Talukdar · Kevin Murphy · Christopher Ré · William Cohen · Tom Mitchell · Andrew McCallum · Jason E Weston · Ramanathan Guha · Boyan Onyshkevych · Hoifung Poon · Oren Etzioni · Ari Kobren · Arvind Neelakantan · Peter Clark -
2014 Session: Tutorial Session A »
Kevin Murphy -
2014 Session: Tutorial Session A »
Kevin Murphy -
2014 Session: Tutorial Session A »
Kevin Murphy -
2012 Poster: Fast Bayesian Inference for Non-Conjugate Gaussian Process Regression »
Mohammad Emtiyaz Khan · Shakir Mohamed · Kevin Murphy -
2010 Poster: Variational bounds for mixed-data factor analysis »
Mohammad Emtiyaz Khan · Benjamin Marlin · Guillaume Bouchard · Kevin Murphy -
2009 Oral: Accelerating Bayesian Structural Inference for Non-Decomposable Gaussian Graphical Models »
Baback Moghaddam · Benjamin Marlin · Mohammad Emtiyaz Khan · Kevin Murphy -
2009 Poster: Accelerating Bayesian Structural Inference for Non-Decomposable Gaussian Graphical Models »
Baback Moghaddam · Benjamin Marlin · Mohammad Emtiyaz Khan · Kevin Murphy -
2007 Workshop: Statistical Network Models »
Kevin Murphy · Lise Getoor · Eric Xing · Raphael Gottardo