Timezone: »
Teaching an agent to perform new tasks using natural language can easily be hindered by ambiguities in interpretation. When a teacher provides an instruction to a learner about an object by referring to its features, the learner can misunderstand the teacher's intentions, for instance if the instruction ambiguously refer to features of the object, a phenomenon called referential ambiguity. We study how two concepts derived from cognitive sciences can help resolve those referential ambiguities: pedagogy (selecting the right instructions) and pragmatism (learning the preferences of the other agents using inductive reasoning). We apply those ideas to a teacher/learner setup with two artificial agents on a simulated robotic task (block-stacking). We show that these concepts improve sample efficiency for training the learner.
Author Information
Hugo Caselles-Dupré (ISIR (Sorbonne Université))
Postdoc working on Reinforcement Learning and Developmental Robotics.
Olivier Sigaud (Sorbonne University)
Mohamed CHETOUANI (ISIR, UMR 7222)
More from the Same Authors
-
2021 : Learning Collective Action under Risk Diversity »
Ramona Merhej · Fernando Santos · Francisco S. Melo · Mohamed CHETOUANI · Francisco Santos -
2022 Poster: EAGER: Asking and Answering Questions for Automatic Reward Shaping in Language-guided RL »
Thomas Carta · Pierre-Yves Oudeyer · Olivier Sigaud · Sylvain Lamprier -
2022 Poster: Pragmatically Learning from Pedagogical Demonstrations in Multi-Goal Environments »
Hugo Caselles-Dupré · Olivier Sigaud · Mohamed CHETOUANI -
2020 : Poster Session »
Kwanyoung Park · Haizi Yu · Alban Laflaquière · Yizhou Zhang · Hugo Caselles-Dupré · Charlie Snell · Philip Ball · Jhoseph Shin · Jelena Sucevic · Kezhen Chen · Won-Seok Choi · Eon-Suk Ko · Xu Ji -
2019 Poster: Symmetry-Based Disentangled Representation Learning requires Interaction with Environments »
Hugo Caselles-Dupré · Michael Garcia Ortiz · David Filliat -
2019 Poster: Learning Compositional Neural Programs with Recursive Tree Search and Planning »
Thomas PIERROT · Guillaume Ligner · Scott Reed · Olivier Sigaud · Nicolas Perrin · Alexandre Laterre · David Kas · Karim Beguir · Nando de Freitas -
2019 Spotlight: Learning Compositional Neural Programs with Recursive Tree Search and Planning »
Thomas PIERROT · Guillaume Ligner · Scott Reed · Olivier Sigaud · Nicolas Perrin · Alexandre Laterre · David Kas · Karim Beguir · Nando de Freitas