Timezone: »
We introduce a novel setting, wherein an agent needs to learn a task from a demonstration of a related task with the difference between the tasks communicated in natural language. The proposed setting allows reusing demonstrations from other tasks, by providing low effort language descriptions, and can also be used to provide feedback to correct agent errors, which are both important desiderata for building intelligent agents that assist humans in daily tasks. To enable progress in this proposed setting, we create two benchmarks---Room Rearrangement and Room Navigation---that cover a diverse set of task adaptations. Further, we propose a framework that uses a transformer-based model to reason about the entities in the tasks and their relationships, to learn a policy for the target task.
Author Information
Prasoon Goyal (UT Austin / Amazon)
Raymond Mooney (University of Texas at Austin)
Scott Niekum (UT Austin)
More from the Same Authors
-
2022 : Zero-shot Video Moment Retrieval With Off-the-Shelf Models »
Anuj Diwan · Puyuan Peng · Raymond Mooney -
2022 : Using Both Demonstrations and Language Instructions to Efficiently Learn Robotic Tasks »
Albert Yu · Raymond Mooney -
2022 : A Ranking Game for Imitation Learning »
Harshit Sushil Sikchi · Akanksha Saran · Wonjoon Goo · Scott Niekum -
2022 Workshop: All Things Attention: Bridging Different Perspectives on Attention »
Abhijat Biswas · Akanksha Saran · Khimya Khetarpal · Reuben Aronson · Ruohan Zhang · Grace Lindsay · Scott Niekum -
2021 Poster: Adversarial Intrinsic Motivation for Reinforcement Learning »
Ishan Durugkar · Mauricio Tec · Scott Niekum · Peter Stone -
2021 Poster: SOPE: Spectrum of Off-Policy Estimators »
Christina Yuan · Yash Chandak · Stephen Giguere · Philip Thomas · Scott Niekum -
2021 Poster: Universal Off-Policy Evaluation »
Yash Chandak · Scott Niekum · Bruno da Silva · Erik Learned-Miller · Emma Brunskill · Philip Thomas -
2020 Poster: Bayesian Robust Optimization for Imitation Learning »
Daniel S. Brown · Scott Niekum · Marek Petrik -
2019 : Scott Niekum: Scaling Probabilistically Safe Learning to Robotics »
Scott Niekum -
2019 Poster: Self-Critical Reasoning for Robust Visual Question Answering »
Jialin Wu · Raymond Mooney -
2019 Spotlight: Self-Critical Reasoning for Robust Visual Question Answering »
Jialin Wu · Raymond Mooney -
2018 : Learning to Understand Natural Language Instructions through Human-Robot Dialog »
Raymond Mooney -
2017 : Panel Discussion »
Felix Hill · Olivier Pietquin · Jack Gallant · Raymond Mooney · Sanja Fidler · Chen Yu · Devi Parikh -
2017 : Visually Grounded Language: Past, Present, and Future... »
Raymond Mooney -
2015 : Generating Natural-Language Video Descriptions using LSTM Recurrent Neural Networks »
Raymond Mooney -
2015 Poster: Policy Evaluation Using the Ω-Return »
Philip Thomas · Scott Niekum · Georgios Theocharous · George Konidaris -
2011 Workshop: Integrating Language and Vision »
Raymond Mooney · Trevor Darrell · Kate Saenko