Timezone: »
In medicine, researchers often seek to infer the effects of a given treatment on patients' outcomes, such as the expected time until infection. However, the standard methods for causal survival analysis make simplistic assumptions about the data-generating process and cannot capture complex interactions among patient covariates. We introduce the Dynamic Survival Transformer (DynST), a deep survival model that trains on electronic health records (EHRs). Unlike previous transformers used in survival analysis, DynST can make use of time-varying information to predict evolving survival probabilities. We derive a semi-synthetic EHR dataset from MIMIC-III to show that DynST can accurately estimate the causal effect of a treatment intervention on restricted mean survival time (RMST). We demonstrate that DynST achieves better predictive and causal estimation than two alternative models.
Author Information
Prayag Chatha (University of Michigan - Ann Arbor)

I am a Statistics Ph.D. student at the University of Michigan, Ann Arbor. My research focuses on machine learning for causal inference and electronic health records. My side interests include music, economic history, and literature.
Yixin Wang (University of Michigan)
Zhenke Wu (University of Michigan)
Zhenke Wu’s research involves the development of statistical methods that inform health decisions made by individuals. He is particularly interested in scalable Bayesian methods that integrate multiple sources of evidence, with a focus on hierarchical latent variable modeling. We have applied our methods to estimate the etiology of childhood pneumonia, autoantibody signatures for subsetting autoimmune disease patients and to predict whether a user is engaged with mobile applications. Zhenke has developed original methods and software that are now used by investigators from research institutes such as US CDC and Johns Hopkins, as well as site investigators from developing countries, e.g., Kenya, South Africa, Gambia, Mali, Zambia, Thailand and Bangladesh. Zhenke completed a BS in Math at Fudan University in 2009 and a PhD in Biostatistics from the Johns Hopkins University in 2014 and then stayed at Hopkins for his postdoctoral training. Since 2016, Zhenke is Assistant Professor of Biostatistics, and Research Assistant Professor in Michigan Institute for Data Science (MIDAS) at University of Michigan, Ann Arbor.
Jeffrey Regier (University of Michigan)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 : Dynamic Survival Transformers for Causal Inference with Electronic Health Records »
Fri. Dec 2nd 09:00 -- 10:00 PM Room
More from the Same Authors
-
2021 Spotlight: Learning Equilibria in Matching Markets from Bandit Feedback »
Meena Jagadeesan · Alexander Wei · Yixin Wang · Michael Jordan · Jacob Steinhardt -
2021 : Desiderata for Representation Learning: A Causal Perspective »
Yixin Wang · Michael Jordan -
2021 : An Empirical Comparison of GANs and Normalizing Flows for Density Estimation »
TIanci Liu · Jeffrey Regier -
2022 : Scalable Bayesian Inference for Finding Strong Gravitational Lenses »
Yash Patel · Jeffrey Regier -
2022 : Statistical Inference for Coadded Astronomical Images »
Mallory Wang · Ismael Mendoza · Jeffrey Regier · Camille Avestruz · Cheng Wang -
2022 : A Bayesian Causal Inference Approach for Assessing Fairness in Clinical Decision-Making »
Linying Zhang · Lauren Richter · Yixin Wang · Anna Ostropolets · Noemie Elhadad · David Blei · George Hripcsak -
2022 : Valid Inference after Causal Discovery »
Paula Gradu · Tijana Zrnic · Yixin Wang · Michael Jordan -
2022 : Interventional Causal Representation Learning »
Kartik Ahuja · Yixin Wang · Divyat Mahajan · Yoshua Bengio -
2022 : Interventional Causal Representation Learning »
Kartik Ahuja · Yixin Wang · Divyat Mahajan · Yoshua Bengio -
2022 : Interventional Causal Representation Learning »
Kartik Ahuja · Yixin Wang · Divyat Mahajan · Yoshua Bengio -
2022 Workshop: Learning Meaningful Representations of Life »
Elizabeth Wood · Adji Bousso Dieng · Aleksandrina Goeva · Alex X Lu · Anshul Kundaje · Chang Liu · Debora Marks · Ed Boyden · Eli N Weinstein · Lorin Crawford · Mor Nitzan · Rebecca Boiarsky · Romain Lopez · Tamara Broderick · Ray Jones · Wouter Boomsma · Yixin Wang · Stephen Ra -
2022 Poster: Normalizing Flows for Knockoff-free Controlled Feature Selection »
Derek Hansen · Brian Manzo · Jeffrey Regier -
2022 Poster: Anticipating Performativity by Predicting from Predictions »
Celestine Mendler-Dünner · Frances Ding · Yixin Wang -
2022 Poster: Empirical Gateaux Derivatives for Causal Inference »
Michael Jordan · Yixin Wang · Angela Zhou -
2022 Poster: Kernel Multimodal Continuous Attention »
Alexander Moreno · Zhenke Wu · Supriya Nagesh · Walter Dempsey · James Rehg -
2021 : Invited Talk 6 Q&A »
Yixin Wang -
2021 : Statistical and Computational Tradeoffs in Variational Bayes »
Yixin Wang -
2021 Workshop: Learning Meaningful Representations of Life (LMRL) »
Elizabeth Wood · Adji Bousso Dieng · Aleksandrina Goeva · Anshul Kundaje · Barbara Engelhardt · Chang Liu · David Van Valen · Debora Marks · Edward Boyden · Eli N Weinstein · Lorin Crawford · Mor Nitzan · Romain Lopez · Tamara Broderick · Ray Jones · Wouter Boomsma · Yixin Wang -
2021 Poster: Posterior Collapse and Latent Variable Non-identifiability »
Yixin Wang · David Blei · John Cunningham -
2021 Poster: Learning Equilibria in Matching Markets from Bandit Feedback »
Meena Jagadeesan · Alexander Wei · Yixin Wang · Michael Jordan · Jacob Steinhardt -
2020 Workshop: Learning Meaningful Representations of Life (LMRL.org) »
Elizabeth Wood · Debora Marks · Ray Jones · Adji Bousso Dieng · Alan Aspuru-Guzik · Anshul Kundaje · Barbara Engelhardt · Chang Liu · Edward Boyden · Kresten Lindorff-Larsen · Mor Nitzan · Smita Krishnaswamy · Wouter Boomsma · Yixin Wang · David Van Valen · Orr Ashenberg -
2020 Poster: Point process models for sequence detection in high-dimensional neural spike trains »
Alex Williams · Anthony Degleris · Yixin Wang · Scott Linderman -
2020 Oral: Point process models for sequence detection in high-dimensional neural spike trains »
Alex Williams · Anthony Degleris · Yixin Wang · Scott Linderman -
2020 Poster: Decision-Making with Auto-Encoding Variational Bayes »
Romain Lopez · Pierre Boyeau · Nir Yosef · Michael Jordan · Jeffrey Regier -
2020 Poster: A Robust Functional EM Algorithm for Incomplete Panel Count Data »
Alexander Moreno · Zhenke Wu · Jamie Roslyn Yap · Cho Lam · David Wetter · Inbal Nahum-Shani · Walter Dempsey · James Rehg -
2019 Poster: Variational Bayes under Model Misspecification »
Yixin Wang · David Blei -
2019 Poster: Using Embeddings to Correct for Unobserved Confounding in Networks »
Victor Veitch · Yixin Wang · David Blei -
2018 Poster: Stochastic Cubic Regularization for Fast Nonconvex Optimization »
Nilesh Tripuraneni · Mitchell Stern · Chi Jin · Jeffrey Regier · Michael Jordan -
2018 Oral: Stochastic Cubic Regularization for Fast Nonconvex Optimization »
Nilesh Tripuraneni · Mitchell Stern · Chi Jin · Jeffrey Regier · Michael Jordan -
2018 Poster: Information Constraints on Auto-Encoding Variational Bayes »
Romain Lopez · Jeffrey Regier · Michael Jordan · Nir Yosef -
2017 Poster: Fast Black-box Variational Inference through Stochastic Trust-Region Optimization »
Jeffrey Regier · Michael Jordan · Jon McAuliffe -
2017 Spotlight: Fast Black-box Variational Inference through Stochastic Trust-Region Optimization »
Jeffrey Regier · Michael Jordan · Jon McAuliffe -
2015 Poster: A Gaussian Process Model of Quasar Spectral Energy Distributions »
Andrew Miller · Albert Wu · Jeffrey Regier · Jon McAuliffe · Dustin Lang · Mr. Prabhat · David Schlegel · Ryan Adams