Timezone: »
An objective assessment of intrathoracic pressures remains an important diagnostic method for patients with heart failure. Although cardiac catheterization is the gold standard for estimating central hemodynamic pressures, it is an invasive procedure where a pressure transducer is inserted into a great vessel and threaded into the right heart chambers. Approaches that leverage non-invasive signals – such as the electrocardiogram (ECG) – have the promise to make the routine estimation of cardiac pressures feasible in both inpatient and outpatient settings. Prior models that were trained in a supervised fashion to estimate central pressures have shown good discriminatory ability over a heterogeneous cohort when the number of training examples is large. As obtaining central pressures (the labels) requires an invasive procedure that can only be performed in an inpatient setting, acquiring large labeled datasets for different patient cohorts is challenging. In this work, we leverage a dataset that contains over 5.4 million ECGs, without concomitant central pressure labels, to improve the performance of models trained with sparsely labeled datasets. Using a deep metric learning (DML) objective function, we develop a procedure for building latent 12-lead ECG representations and demonstrate that these latent representations can be used to improve the discriminatory performance of a model trained in a supervised fashion on a smaller labeled dataset. More generally, our results show that training with DML objectives with both labeled and unlabeled ECGs showed the downstream performance on par with the supervised baseline.
Author Information
Hyewon Jeong (MIT)
Marzyeh Ghassemi (MIT)
Collin Stultz (MIT)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 : Unsupervised Deep Metric Learning for the inference of hemodynamic value with Electrocardiogram signals »
Fri. Dec 2nd 09:00 -- 10:00 PM Room
More from the Same Authors
-
2021 : Improving the Fairness of Deep Chest X-ray Classifiers »
Haoran Zhang · Natalie Dullerud · Karsten Roth · Stephen Pfohl · Marzyeh Ghassemi -
2022 : Multimodal Checklists for Fair Clinical Decision Support »
Qixuan Jin · Marzyeh Ghassemi -
2022 : Deep Metric Learning to predict cardiac pressure with ECG »
Hyewon Jeong · Marzyeh Ghassemi · Collin Stultz -
2022 : Identifying Disparities in Sepsis Treatment using Inverse Reinforcement Learning »
Hyewon Jeong · Taylor Killian · Sanjat Kanjilal · Siddharth Nayak · Marzyeh Ghassemi -
2022 : Evaluating and Improving Robustness of Self-Supervised Representations to Spurious Correlations »
Kimia Hamidieh · Haoran Zhang · Marzyeh Ghassemi -
2022 : Learning to Defer in Ranking Systems »
Aparna Balagopalan · Haoran Zhang · Elizabeth Bondi-Kelly · Thomas Hartvigsen · Marzyeh Ghassemi -
2022 : Estimating the Treatment Effect of Antibiotics Exposure on the Risk of Developing Anti-Microbial Resistance »
Hyewon Jeong · Kexin Yang · Ziming Wei · Yidan Ma · Intae Moon · Sanjat Kanjilal -
2022 : Fair Active learning by exploiting causal data structure »
Sindhu C M Gowda · Haoran Zhang · Marzyeh Ghassemi -
2022 : Evaluation of Active Learning and Domain Adaptation on Health Data »
Kristina Holsapple · Haoran Zhang · Marzyeh Ghassemi -
2022 : Aging with GRACE: Lifelong Model Editing with Discrete Key-Value Adaptors »
Thomas Hartvigsen · Swami Sankaranarayanan · Hamid Palangi · Yoon Kim · Marzyeh Ghassemi -
2022 : Feature Restricted Group Dropout for Robust Electronic Health Record Predictions »
Bret Nestor · Anna Goldenberg · Marzyeh Ghassemi -
2022 : Identifying Disparities in Sepsis Treatment by Learning the Expert Policy »
Hyewon Jeong · Siddharth Nayak · Taylor Killian · Sanjat Kanjilal · Marzyeh Ghassemi -
2022 : Identifying Disparities in Sepsis Treatment by Learning the Expert Policy »
Hyewon Jeong · Siddharth Nayak · Taylor Killian · Sanjat Kanjilal · Marzyeh Ghassemi -
2022 : "Why did the Model Fail?": Attributing Model Performance Changes to Distribution Shifts »
Haoran Zhang · Harvineet Singh · Marzyeh Ghassemi · Shalmali Joshi -
2022 : When Personalization Harms: Reconsidering the Use of Group Attributes of Prediction »
Vinith Suriyakumar · Marzyeh Ghassemi · Berk Ustun -
2022 : Real world relevance of generative counterfactual explanations »
Swami Sankaranarayanan · Thomas Hartvigsen · Lauren Oakden-Rayner · Marzyeh Ghassemi · Phillip Isola -
2022 : Just Following AI Orders: When Unbiased People Are Influenced By Biased AI »
Hammaad Adam · Aparna Balagopalan · Emily Alsentzer · Fotini Christia · Marzyeh Ghassemi -
2023 Affinity Workshop: Muslims in ML »
Sanae Lotfi · Hammaad Adam · Marzyeh Ghassemi · Shakir Mohamed · S. M. Ali Eslami -
2022 : Dissecting In-the-Wild Stress from Multimodal Sensor Data »
Sujay Nagaraj · Thomas Hartvigsen · Adrian Boch · Luca Foschini · Marzyeh Ghassemi · Sarah Goodday · Stephen Friend · Anna Goldenberg -
2022 : Just Following AI Orders: When Unbiased People Are Influenced By Biased AI »
Hammaad Adam · Aparna Balagopalan · Emily Alsentzer · Fotini Christia · Marzyeh Ghassemi -
2022 : Contrastive Pre-Training for Multimodal Medical Time Series »
Aniruddh Raghu · Payal Chandak · Ridwan Alam · John Guttag · Collin Stultz -
2022 : Contrastive Pre-Training for Multimodal Medical Time Series »
Aniruddh Raghu · Payal Chandak · Ridwan Alam · John Guttag · Collin Stultz -
2022 : Aging with GRACE: Lifelong Model Editing with Discrete Key-Value Adaptors »
Thomas Hartvigsen · Swami Sankaranarayanan · Hamid Palangi · Yoon Kim · Marzyeh Ghassemi -
2022 : Fair Multimodal Checklists for Interpretable Clinical Time Series Prediction »
Qixuan Jin · Haoran Zhang · Thomas Hartvigsen · Marzyeh Ghassemi -
2022 : Fair Multimodal Checklists for Interpretable Clinical Time Series Prediction »
Qixuan Jin · Haoran Zhang · Thomas Hartvigsen · Marzyeh Ghassemi -
2022 Workshop: Robustness in Sequence Modeling »
Nathan Ng · Haoran Zhang · Vinith Suriyakumar · Chantal Shaib · Kyunghyun Cho · Yixuan Li · Alice Oh · Marzyeh Ghassemi -
2022 Workshop: Learning from Time Series for Health »
Sana Tonekaboni · Thomas Hartvigsen · Satya Narayan Shukla · Gunnar Rätsch · Marzyeh Ghassemi · Anna Goldenberg -
2022 Poster: If Influence Functions are the Answer, Then What is the Question? »
Juhan Bae · Nathan Ng · Alston Lo · Marzyeh Ghassemi · Roger Grosse -
2021 : Data Opportunities: unsolved medical problems and where new data can help »
Bin Yu · Regina Barzilay · Marzyeh Ghassemi · Emma Pierson -
2021 Workshop: Machine learning from ground truth: New medical imaging datasets for unsolved medical problems. »
Katy Haynes · Ziad Obermeyer · Emma Pierson · Marzyeh Ghassemi · Matthew Lungren · Sendhil Mullainathan · Matthew McDermott -
2021 Poster: Learning Optimal Predictive Checklists »
Haoran Zhang · Quaid Morris · Berk Ustun · Marzyeh Ghassemi -
2021 Poster: Characterizing Generalization under Out-Of-Distribution Shifts in Deep Metric Learning »
Timo Milbich · Karsten Roth · Samarth Sinha · Ludwig Schmidt · Marzyeh Ghassemi · Bjorn Ommer -
2021 Poster: Medical Dead-ends and Learning to Identify High-Risk States and Treatments »
Mehdi Fatemi · Taylor Killian · Jayakumar Subramanian · Marzyeh Ghassemi -
2020 : Policy Panel »
Roya Pakzad · Dia Kayyali · Marzyeh Ghassemi · Shakir Mohamed · Mohammad Norouzi · Ted Pedersen · Anver Emon · Abubakar Abid · Darren Byler · Samhaa R. El-Beltagy · Nayel Shafei · Mona Diab -
2020 Affinity Workshop: Muslims in ML »
Marzyeh Ghassemi · Mohammad Norouzi · Shakir Mohamed · Aya Salama · Tasmie Sarker -
2020 : Welcome »
Marzyeh Ghassemi -
2019 Poster: The Cells Out of Sample (COOS) dataset and benchmarks for measuring out-of-sample generalization of image classifiers »
Alex Lu · Amy Lu · Wiebke Schormann · Marzyeh Ghassemi · David Andrews · Alan Moses -
2018 Workshop: Machine Learning for Health (ML4H): Moving beyond supervised learning in healthcare »
Andrew Beam · Tristan Naumann · Marzyeh Ghassemi · Matthew McDermott · Madalina Fiterau · Irene Y Chen · Brett Beaulieu-Jones · Michael Hughes · Farah Shamout · Corey Chivers · Jaz Kandola · Alexandre Yahi · Samuel Finlayson · Bruno Jedynak · Peter Schulam · Natalia Antropova · Jason Fries · Adrian Dalca · Irene Chen -
2017 Workshop: Machine Learning for Health (ML4H) - What Parts of Healthcare are Ripe for Disruption by Machine Learning Right Now? »
Jason Fries · Alex Wiltschko · Andrew Beam · Isaac S Kohane · Jasper Snoek · Peter Schulam · Madalina Fiterau · David Kale · Rajesh Ranganath · Bruno Jedynak · Michael Hughes · Tristan Naumann · Natalia Antropova · Adrian Dalca · SHUBHI ASTHANA · Prateek Tandon · Jaz Kandola · Uri Shalit · Marzyeh Ghassemi · Tim Althoff · Alexander Ratner · Jumana Dakka -
2016 Workshop: Machine Learning for Health »
Uri Shalit · Marzyeh Ghassemi · Jason Fries · Rajesh Ranganath · Theofanis Karaletsos · David Kale · Peter Schulam · Madalina Fiterau