Timezone: »
Heart rate (HR) dynamics in response to workout intensity measure key aspects of an individual's fitness and cardiorespiratory health. Models of exercise physiology have been used to characterize cardiorespiratory fitness in well-controlled laboratory settings, but face additional challenges when applied to wearables in noisy, real-world settings. Here, we introduce a hybrid machine learning model that combines a physiological model of HR during exercise with complex neural networks in order to learn user-specific fitness representations. We apply this model at scale to a large set of workout data collected with wearables and show that it can accurately predict HR response to exercise demand in new workouts. We further show that the learned embeddings correlate with traditional metrics of cardiorespiratory fitness. Lastly, we illustrate how our model naturally incorporates and learn the effects of environmental factors such as temperature and humidity.
Author Information
Achille Nazaret (Columbia University)
Sana Tonekaboni (University of Toronto / Vector Institute)
Gregory Darnell (Apple)
Shirley Ren (Apple)
Guillermo Sapiro (Duke University)
Andrew Miller (Apple)
More from the Same Authors
-
2021 : Federating for Learning Group Fair Models »
Afroditi Papadaki · Natalia Martinez · Martin Bertran · Guillermo Sapiro · Miguel Rodrigues -
2021 : Distributionally Robust Group Backwards Compatibility »
Martin Bertran · Natalia Martinez · Guillermo Sapiro -
2021 : Complexity in Facial dynamics using Computer Vision as Behavioral Assessment for Autism Spectrum Disorder »
Pradeep Raj Krishnappa Babu · J. Matias Di Martino · Kimberley Carpenter · Steven Espinosa · geraldine Dawson · Guillermo Sapiro -
2022 : Improving Generalization with Physical Equations »
Antoine Wehenkel · Jens Behrmann · Hsiang Hsu · Guillermo Sapiro · Gilles Louppe · Joern-Henrik Jacobsen -
2022 : Federated Fairness without Access to Demographics »
Afroditi Papadaki · Natalia Martinez · Martin Bertran · Guillermo Sapiro · Miguel Rodrigues -
2022 : A Large-Scale Observational Study of the Causal Effects of a Behavioral Health Nudge »
Achille Nazaret · Guillermo Sapiro -
2022 : A Tale of Two Food Adventurers: The Challenges and Triumphs of Repeated Food Exposures in Avoidant/Restrictive Food Intake Disorder »
Young Kyung Kim · Juan Matias Di Martino · Julia Nicholas · Ilana Pilato · Alannah Rivera-Cancel · Julia Gianneschi · Jalisa Jackson · Ellen Mines · Nancy Zucker · Guillermo Sapiro -
2022 : Continual Learning on Auxiliary tasks via Replayed Experiences: CLARE »
Bohdan Naida · Addison Weatherhead · Sana Tonekaboni · Anna Goldenberg -
2022 Workshop: Learning from Time Series for Health »
Sana Tonekaboni · Thomas Hartvigsen · Satya Narayan Shukla · Gunnar Rätsch · Marzyeh Ghassemi · Anna Goldenberg -
2020 : Lightning Talk 2: Pareto Robustness for Fairness Beyond Demographics »
Natalia Martinez · Martin Bertran · Afroditi Papadaki · Miguel Rodrigues · Guillermo Sapiro -
2020 Poster: What went wrong and when? Instance-wise feature importance for time-series black-box models »
Sana Tonekaboni · Shalmali Joshi · Kieran Campbell · David Duvenaud · Anna Goldenberg -
2018 : Poster Session »
Phillipp Schoppmann · Patrick Yu · Valerie Chen · Travis Dick · Marc Joye · Ningshan Zhang · Frederik Harder · Olli Saarikivi · Théo Ryffel · Yunhui Long · Théo JOURDAN · Di Wang · Antonio Marcedone · Negev Shekel Nosatzki · Yatharth A Dubey · Antti Koskela · Peter Bloem · Aleksandra Korolova · Martin Bertran · Hao Chen · Galen Andrew · Natalia Martinez · Janardhan Kulkarni · Jonathan Passerat-Palmbach · Guillermo Sapiro · Amrita Roy Chowdhury -
2015 : Computational discussion: Challenges in analyzing large neuroimaging datasets »
Guillermo Sapiro -
2015 Poster: Discriminative Robust Transformation Learning »
Jiaji Huang · Qiang Qiu · Guillermo Sapiro · Robert Calderbank -
2013 Poster: Robust Multimodal Graph Matching: Sparse Coding Meets Graph Matching »
Marcelo Fiori · Pablo Sprechmann · Joshua T Vogelstein · Pablo Muse · Guillermo Sapiro -
2013 Spotlight: Robust Multimodal Graph Matching: Sparse Coding Meets Graph Matching »
Marcelo Fiori · Pablo Sprechmann · Joshua T Vogelstein · Pablo Muse · Guillermo Sapiro -
2013 Poster: Supervised Sparse Analysis and Synthesis Operators »
Pablo Sprechmann · Roee Litman · Tal Ben Yakar · Alexander M Bronstein · Guillermo Sapiro -
2012 Poster: Topology Constraints in Graphical Models »
Marcelo Fiori · Pablo Muse · Guillermo Sapiro -
2012 Poster: Finding Exemplars from Pairwise Dissimilarities via Simultaneous Sparse Recovery »
Ehsan Elhamifar · Guillermo Sapiro · René Vidal -
2009 Poster: Non-Parametric Bayesian Dictionary Learning for Sparse Image Representations »
Mingyuan Zhou · Haojun Chen · John Paisley · Lu Ren · Guillermo Sapiro · Lawrence Carin -
2009 Oral: Non-Parametric Bayesian Dictionary Learning for Sparse Image Representations »
Mingyuan Zhou · Haojun Chen · John Paisley · Lu Ren · Guillermo Sapiro · Larry Carin -
2008 Poster: SDL: Supervised Dictionary Learning »
Julien Mairal · Francis Bach · Jean A Ponce · Guillermo Sapiro · Andrew Zisserman -
2006 Poster: Stratification Learning: Detecting Mixed Density and Dimensionality in High Dimensional Point Clouds »
Gloria Haro · Gregory Randall · Guillermo Sapiro