Timezone: »
Traditional models of glucose-insulin dynamics rely on heuristic parameterizations chosen to fit observations within a laboratory setting. However, these models cannot describe glucose dynamics in daily life. One source of failure is in their descriptions of glucose absorption rates after meal events. A meal's macronutritional content has nuanced effects on the absorption profile, which is difficult to model mechanistically. In this paper, we propose to learn the effects of macronutrition content from glucose-insulin data and meal covariates. Given macronutrition information and meal times, we use a neural network to predict an individual's glucose absorption rate. We use this neural rate function as the control function in a differential equation of glucose dynamics, enabling end-to-end training. On simulated data, our approach is able to closely approximate true absorption rates, resulting in better forecast than heuristic parameterizations, despite only observing glucose, insulin, and macronutritional information. Our work readily generalizes to meal events with higher-dimensional covariates, such as images, setting the stage for glucose dynamics models that are personalized to each individual's daily life.
Author Information
Ke Alexander Wang (Stanford University)
Matthew Levine (California Institute of Technology)

5th year graduate student in computing and mathematical sciences at Caltech. I am interested in developing novel methods within the intersections of dynamical systems, machine learning, and data assimilation, and have most often applied these methods to biomedical contexts, including modeling and prediction of the glucose-insulin system.
Jiaxin Shi (Stanford University)
Emily Fox (Stanford University)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 : Learning Absorption Rates in Glucose-Insulin Dynamics from Meal Covariates »
Fri. Dec 2nd 05:00 -- 05:30 PM Room
More from the Same Authors
-
2021 : Is Importance Weighting Incompatible with Interpolating Classifiers? »
Ke Alexander Wang · Niladri Chatterji · Saminul Haque · Tatsunori Hashimoto -
2022 : A Finite-Particle Convergence Rate for Stein Variational Gradient Descent »
Jiaxin Shi · Lester Mackey -
2023 Poster: A Finite-Particle Convergence Rate for Stein Variational Gradient Descent »
Jiaxin Shi · Lester Mackey -
2022 Spotlight: Lightning Talks 1B-4 »
Andrei Atanov · Shiqi Yang · Wanshan Li · Yongchang Hao · Ziquan Liu · Jiaxin Shi · Anton Plaksin · Jiaxiang Chen · Ziqi Pan · yaxing wang · Yuxin Liu · Stepan Martyanov · Alessandro Rinaldo · Yuhao Zhou · Li Niu · Qingyuan Yang · Andrei Filatov · Yi Xu · Liqing Zhang · Lili Mou · Ruomin Huang · Teresa Yeo · kai wang · Daren Wang · Jessica Hwang · Yuanhong Xu · Qi Qian · Hu Ding · Michalis Titsias · Shangling Jui · Ajay Sohmshetty · Lester Mackey · Joost van de Weijer · Hao Li · Amir Zamir · Xiangyang Ji · Antoni Chan · Rong Jin -
2022 Spotlight: Gradient Estimation with Discrete Stein Operators »
Jiaxin Shi · Yuhao Zhou · Jessica Hwang · Michalis Titsias · Lester Mackey -
2022 : Poster Session 2 »
Jinwuk Seok · Bo Liu · Ryotaro Mitsuboshi · David Martinez-Rubio · Weiqiang Zheng · Ilgee Hong · Chen Fan · Kazusato Oko · Bo Tang · Miao Cheng · Aaron Defazio · Tim G. J. Rudner · Gabriele Farina · Vishwak Srinivasan · Ruichen Jiang · Peng Wang · Jane Lee · Nathan Wycoff · Nikhil Ghosh · Yinbin Han · David Mueller · Liu Yang · Amrutha Varshini Ramesh · Siqi Zhang · Kaifeng Lyu · David Yunis · Kumar Kshitij Patel · Fangshuo Liao · Dmitrii Avdiukhin · Xiang Li · Sattar Vakili · Jiaxin Shi -
2022 Poster: Gradient Estimation with Discrete Stein Operators »
Jiaxin Shi · Yuhao Zhou · Jessica Hwang · Michalis Titsias · Lester Mackey -
2021 : Is Importance Weighting Incompatible with Interpolating Classifiers? »
Ke Alexander Wang · Niladri Chatterji · Saminul Haque · Tatsunori Hashimoto -
2021 : Spotlight Talk 3 »
Ke Alexander Wang -
2020 Poster: Simplifying Hamiltonian and Lagrangian Neural Networks via Explicit Constraints »
Marc Finzi · Ke Alexander Wang · Andrew Wilson -
2020 Spotlight: Simplifying Hamiltonian and Lagrangian Neural Networks via Explicit Constraints »
Marc Finzi · Ke Alexander Wang · Andrew Wilson -
2019 : Emily Fox »
Emily Fox -
2019 Poster: Exact Gaussian Processes on a Million Data Points »
Ke Alexander Wang · Geoff Pleiss · Jacob Gardner · Stephen Tyree · Kilian Weinberger · Andrew Gordon Wilson -
2018 : Plenary Talk 4 »
Emily Fox -
2018 Poster: Large-Scale Stochastic Sampling from the Probability Simplex »
Jack Baker · Paul Fearnhead · Emily Fox · Christopher Nemeth -
2016 : Emily Fox. Sparse Graphs via Exchangeable Random Measures. »
Emily Fox -
2016 : Emily Fox : Functional Connectivity in MEG via Graphical Models of Time Series »
Emily Fox -
2015 : Bayesian Time Series: Structured Representations for Scalability »
Emily Fox -
2015 Poster: A Complete Recipe for Stochastic Gradient MCMC »
Yi-An Ma · Tianqi Chen · Emily Fox -
2014 Poster: Expectation-Maximization for Learning Determinantal Point Processes »
Jennifer A Gillenwater · Alex Kulesza · Emily Fox · Ben Taskar -
2014 Poster: Stochastic variational inference for hidden Markov models »
Nick Foti · Jason Xu · Dillon Laird · Emily Fox -
2013 Poster: Approximate Inference in Continuous Determinantal Processes »
Raja Hafiz Affandi · Emily Fox · Ben Taskar -
2013 Spotlight: Approximate Inference in Continuous Determinantal Processes »
Raja Hafiz Affandi · Emily Fox · Ben Taskar -
2013 Session: Oral Session 4 »
Emily Fox -
2012 Poster: Multiresolution Gaussian Processes »
Emily Fox · David B Dunson -
2012 Poster: Effective Split-Merge Monte Carlo Methods for Nonparametric Models of Sequential Data »
Michael Hughes · Emily Fox · Erik Sudderth -
2011 Workshop: Bayesian Nonparametric Methods: Hope or Hype? »
Emily Fox · Ryan Adams -
2009 Poster: Sharing Features among Dynamical Systems with Beta Processes »
Emily Fox · Erik Sudderth · Michael Jordan · Alan S Willsky -
2009 Oral: Sharing Features among Dynamical Systems with Beta Processes »
Emily Fox · Erik Sudderth · Michael Jordan · Alan S Willsky -
2008 Poster: Nonparametric Bayesian Learning of Switching Linear Dynamical Systems »
Emily Fox · Erik Sudderth · Michael Jordan · Alan S Willsky -
2008 Spotlight: Nonparametric Bayesian Learning of Switching Linear Dynamical Systems »
Emily Fox · Erik Sudderth · Michael Jordan · Alan S Willsky