Timezone: »
Reinforcement Learning (RL) algorithms can solve challenging control problems directly from image observations, but they often require millions of environment interactions to do so. Recently, model-based RL algorithms have greatly improved sample-efficiency by concurrently learning an internal model of the world, and supplementing real environment interactions with imagined rollouts for policy improvement. However, learning an effective model of the world from scratch is challenging, and in stark contrast to humans that rely heavily on world understanding and visual cues for learning new skills. In this work, we investigate whether internal models learned by modern model-based RL algorithms can be leveraged to solve new, distinctly different tasks faster. We propose Model-Based Cross-Task Transfer (XTRA), a framework for sample-efficient online RL with scalable pretraining and finetuning of learned world models. By proper pretraining and concurrent cross-task online fine-tuning, we achieve substantial improvements over a baseline trained from scratch; we improve mean performance of model-based algorithm EfficientZero by 23%, and by as much as 73% in some instances.
Author Information
yifan xu (university of california san diego)
Nicklas Hansen (UC San Diego)
Zirui Wang (University of California, San Diego)

I am a final-year, final-quarter undergraduate student pursuing a B.S. in Data Science at the Halicioglu Data Science Institute (HDSI) and a B.A. in Cognitive Science at the CogSci Department at the University of California, San Diego (UCSD). My domain focuses on methods & applications in AI/ML in general. I am a recipient of the HDSI Undergraduate Scholarship. During my undergraduate studies & research, I have acquired/am currently acquiring experience in Reinforcement Learning, Hierachical Visual Reasoning, as well as Prompt Tuning. I am fortunate to be advised by Prof. Zhuowen Tu and Prof. Zhiting Hu at UCSD.
Yung-Chieh Chan (University of California, San Diego)
Hao Su (UCSD)
Zhuowen Tu (University of California, San Diego)
More from the Same Authors
-
2021 : ManiSkill: Generalizable Manipulation Skill Benchmark with Large-Scale Demonstrations »
Tongzhou Mu · Zhan Ling · Fanbo Xiang · Derek Yang · Xuanlin Li · Stone Tao · Zhiao Huang · Zhiwei Jia · Hao Su -
2021 : From One Hand to Multiple Hands: Imitation Learning for Dexterous Manipulation from Single-Camera Teleoperation »
Yuzhe Qin · Hao Su · Xiaolong Wang -
2021 : Learning Vision-Guided Quadrupedal Locomotion End-to-End with Cross-Modal Transformers »
Ruihan Yang · Minghao Zhang · Nicklas Hansen · Huazhe Xu · Xiaolong Wang -
2021 : Look Closer: Bridging Egocentric and Third-Person Views with Transformers for Robotic Manipulation »
Rishabh Jangir · Nicklas Hansen · Xiaolong Wang -
2021 : Learning Vision-Guided Quadrupedal Locomotion End-to-End with Cross-Modal Transformers »
Ruihan Yang · Minghao Zhang · Nicklas Hansen · Huazhe Xu · Xiaolong Wang -
2021 : Learning Vision-Guided Quadrupedal Locomotion End-to-End with Cross-Modal Transformers »
Ruihan Yang · Minghao Zhang · Nicklas Hansen · Huazhe Xu · Xiaolong Wang -
2021 : Look Closer: Bridging Egocentric and Third-Person Views with Transformers for Robotic Manipulation »
Rishabh Jangir · Nicklas Hansen · Mohit Jain · Xiaolong Wang -
2022 : Generalizable Point Cloud Reinforcement Learning for Sim-to-Real Dexterous Manipulation »
Yuzhe Qin · Binghao Huang · Zhao-Heng Yin · Hao Su · Xiaolong Wang -
2022 : Abstract-to-Executable Trajectory Translation for One-Shot Task Generalization »
Stone Tao · Xiaochen Li · Tongzhou Mu · Zhiao Huang · Yuzhe Qin · Hao Su -
2022 : VARIATIONAL REPARAMETRIZED POLICY LEARNING WITH DIFFERENTIABLE PHYSICS »
Zhiao Huang · Litian Liang · Zhan Ling · Xuanlin Li · Chuang Gan · Hao Su -
2022 : Multi-skill Mobile Manipulation for Object Rearrangement »
Jiayuan Gu · Devendra Singh Chaplot · Hao Su · Jitendra Malik -
2022 : Visual Reinforcement Learning with Self-Supervised 3D Representations »
Yanjie Ze · Nicklas Hansen · Yinbo Chen · Mohit Jain · Xiaolong Wang -
2022 : MoDem: Accelerating Visual Model-Based Reinforcement Learning with Demonstrations »
Nicklas Hansen · Yixin Lin · Hao Su · Xiaolong Wang · Vikash Kumar · Aravind Rajeswaran -
2022 : Graph Inverse Reinforcement Learning from Diverse Videos »
Sateesh Kumar · Jonathan Zamora · Nicklas Hansen · Rishabh Jangir · Xiaolong Wang -
2022 : On the Feasibility of Cross-Task Transfer with Model-Based Reinforcement Learning »
yifan xu · Nicklas Hansen · Zirui Wang · Yung-Chieh Chan · Hao Su · Zhuowen Tu -
2023 Poster: DiffVL: Scaling Up Soft Body Manipulation using Vision-Language Driven Differentiable Physics »
Zhiao Huang · Feng Chen · Yewen Pu · Chunru Lin · Hao Su · Chuang Gan -
2023 Poster: Language Models Meet World Models: Embodied Experiences Enhance Language Models »
Jiannan Xiang · Tianhua Tao · Yi Gu · Tianmin Shu · Zirui Wang · Zichao Yang · Zhiting Hu -
2023 Poster: Deductive Verification of Chain-of-Thought Reasoning »
Zhan Ling · Yunhao Fang · Xuanlin Li · Zhiao Huang · Mingu Lee · Roland Memisevic · Hao Su -
2023 Poster: OpenShape: Scaling Up 3D Shape Representation Towards Open-World Understanding »
Minghua Liu · Ruoxi Shi · Kaiming Kuang · Yinhao Zhu · Xuanlin Li · Shizhong Han · Hong Cai · Fatih Porikli · Hao Su -
2023 Poster: One-2-3-45: Any Single Image to 3D Mesh in 45 Seconds without Per-Shape Optimization »
Minghua Liu · Chao Xu · Haian Jin · Linghao Chen · Mukund Varma T · Zexiang Xu · Hao Su -
2023 Poster: OpenIllumination: A Multi-Illumination Dateset for Inverse Rendering Evaluation on Real Objects »
Isabella Liu · Linghao Chen · Ziyang Fu · Liwen Wu · Haian Jin · Zhong Li · Chin Ming Ryan Wong · Yi Xu · Ravi Ramamoorthi · Zexiang Xu · Hao Su -
2022 Poster: An In-depth Study of Stochastic Backpropagation »
Jun Fang · Mingze Xu · Hao Chen · Bing Shuai · Zhuowen Tu · Joseph Tighe -
2022 Poster: Semi-supervised Vision Transformers at Scale »
Zhaowei Cai · Avinash Ravichandran · Paolo Favaro · Manchen Wang · Davide Modolo · Rahul Bhotika · Zhuowen Tu · Stefano Soatto -
2021 Poster: Stabilizing Deep Q-Learning with ConvNets and Vision Transformers under Data Augmentation »
Nicklas Hansen · Hao Su · Xiaolong Wang -
2021 Poster: Particle Cloud Generation with Message Passing Generative Adversarial Networks »
Raghav Kansal · Javier Duarte · Hao Su · Breno Orzari · Thiago Tomei · Maurizio Pierini · Mary Touranakou · jean-roch vlimant · Dimitrios Gunopulos -
2020 Poster: Towards Scale-Invariant Graph-related Problem Solving by Iterative Homogeneous GNNs »
Hao Tang · Zhiao Huang · Jiayuan Gu · Bao-Liang Lu · Hao Su -
2020 Poster: Multi-task Batch Reinforcement Learning with Metric Learning »
Jiachen Li · Quan Vuong · Shuang Liu · Minghua Liu · Kamil Ciosek · Henrik Christensen · Hao Su -
2020 Poster: Refactoring Policy for Compositional Generalizability using Self-Supervised Object Proposals »
Tongzhou Mu · Jiayuan Gu · Zhiwei Jia · Hao Tang · Hao Su -
2018 Poster: Deep Functional Dictionaries: Learning Consistent Semantic Structures on 3D Models from Functions »
Minhyuk Sung · Hao Su · Ronald Yu · Leonidas Guibas -
2017 Poster: Introspective Classification with Convolutional Nets »
Long Jin · Justin Lazarow · Zhuowen Tu -
2017 Poster: PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space »
Charles Ruizhongtai Qi · Li Yi · Hao Su · Leonidas Guibas -
2016 Poster: FPNN: Field Probing Neural Networks for 3D Data »
Yangyan Li · Soeren Pirk · Hao Su · Charles R Qi · Leonidas Guibas -
2010 Poster: Object Bank: A High-Level Image Representation for Scene Classification & Semantic Feature Sparsification »
Li-Jia Li · Hao Su · Eric Xing · Li Fei-Fei