Timezone: »
We introduce a challenging decision-making task that we call active acquisition for multimodal temporal data (A2MT). In many real-world scenarios, input features are not readily available at test time and must instead be acquired at significant cost. With A2MT, we aim to learn agents that actively select which modalities of an input to acquire, trading off acquisition cost and predictive performance. A2MT extends a previous task called active feature acquisition to temporal decision making about high-dimensional inputs. Further, we propose a method based on the Perceiver IO architecture to address A2MT in practice. Our agents are able to solve a novel synthetic scenario requiring practically relevant cross-modal reasoning skills. On two large-scale, real-world datasets, Kinetics-700 and AudioSet, our agents successfully learn cost-reactive acquisition behavior. However, an ablation reveals they are unable to learn to learn adaptive acquisition strategies, emphasizing the difficulty of the task even for state-of-the-art models. Applications of A2MT may be impactful in domains like medicine, robotics, or finance, where modalities differ in acquisition cost and informativeness.
Author Information
Jannik Kossen (University of Oxford)
Cătălina Cangea (DeepMind)
Eszter Vértes (DeepMind)
Andrew Jaegle (DeepMind)
Viorica Patraucean (DeepMind)
Ira Ktena (DeepMind)
Nenad Tomasev (DeepMind)
Danielle Belgrave (DeepMind)
More from the Same Authors
-
2021 : LiRo: Benchmark and leaderboard for Romanian language tasks »
Stefan Dumitrescu · Petru Rebeja · Beata Lorincz · Mihaela Gaman · Andrei Avram · Mihai Ilie · Andrei Pruteanu · Adriana Stan · Lorena Rosia · Cristina Iacobescu · Luciana Morogan · George Dima · Gabriel Marchidan · Traian Rebedea · Madalina Chitez · Dani Yogatama · Sebastian Ruder · Radu Tudor Ionescu · Razvan Pascanu · Viorica Patraucean -
2021 : A fine-grained analysis of robustness to distribution shifts »
Olivia Wiles · Sven Gowal · Florian Stimberg · Sylvestre-Alvise Rebuffi · Ira Ktena · Krishnamurthy Dvijotham · Taylan Cemgil -
2022 : Advancing the participatory approach to AI in Mental Health »
Wilson Lee · Munmun De Choudhury · Morgan Scheuerman · Julia Hamer-Hunt · Dan Joyce · Nenad Tomasev · Kevin McKee · Shakir Mohamed · Danielle Belgrave · Christopher Burr -
2022 Workshop: Empowering Communities: A Participatory Approach to AI for Mental Health »
Andrey Kormilitzin · Dan Joyce · Nenad Tomasev · Kevin McKee -
2022 : Opening remarks and welcome »
Andrey Kormilitzin · Dan Joyce · Nenad Tomasev · Kevin McKee -
2022 Panel: Panel 5A-3: Active Surrogate Estimators:… & DaDA: Distortion-aware Domain… »
Jannik Kossen · Sujin Jang -
2022 Poster: Active Surrogate Estimators: An Active Learning Approach to Label-Efficient Model Evaluation »
Jannik Kossen · Sebastian Farquhar · Yarin Gal · Thomas Rainforth -
2022 Affinity Workshop: Queer in AI »
Sarthak Arora · Jaidev Shriram · Evan Dong · Divija Nagaraju · Kruno Lehman · Yanan Long · Nenad Tomasev · Ashwin S · Hang Yuan · Ruchira Ray · Claas Voelcker -
2021 : D&I Remarks (Danielle Belgrave) »
Danielle Belgrave -
2021 Poster: Self-Attention Between Datapoints: Going Beyond Individual Input-Output Pairs in Deep Learning »
Jannik Kossen · Neil Band · Clare Lyle · Aidan Gomez · Thomas Rainforth · Yarin Gal -
2020 : Introduction: Oral 2.1 and Oral 2.2 »
Viorica Patraucean -
2020 : Introduction: Oral 1.1 and Oral 1.2 »
Viorica Patraucean -
2020 Workshop: Beyond BackPropagation: Novel Ideas for Training Neural Architectures »
Mateusz Malinowski · Grzegorz Swirszcz · Viorica Patraucean · Marco Gori · Yanping Huang · Sindy Löwe · Anna Choromanska -
2020 : Live Intro »
Mateusz Malinowski · Viorica Patraucean · Grzegorz Swirszcz · Sindy Löwe · Anna Choromanska · Marco Gori · Yanping Huang -
2020 : Invited Talk: Danielle Belgrave - Machine Learning for Personalised Healthcare: Why is it not better? »
Danielle Belgrave -
2020 Workshop: Causal Discovery and Causality-Inspired Machine Learning »
Biwei Huang · Sara Magliacane · Kun Zhang · Danielle Belgrave · Elias Bareinboim · Daniel Malinsky · Thomas Richardson · Christopher Meek · Peter Spirtes · Bernhard Schölkopf -
2020 Workshop: Machine Learning for Health (ML4H): Advancing Healthcare for All »
Stephanie Hyland · Allen Schmaltz · Charles Onu · Ehi Nosakhare · Emily Alsentzer · Irene Y Chen · Matthew McDermott · Subhrajit Roy · Benjamin Akera · Dani Kiyasseh · Fabian Falck · Griffin Adams · Ioana Bica · Oliver J Bear Don't Walk IV · Suproteem Sarkar · Stephen Pfohl · Andrew Beam · Brett Beaulieu-Jones · Danielle Belgrave · Tristan Naumann -
2020 : Remarks from the WiML 2020 Diversity & Inclusion Chairs »
Danielle Belgrave · Meire Fortunato -
2019 : Implementing Responsible AI »
Brian Green · Wendell Wallach · Patrick Lin · Nenad Tomasev · Jingying Yang · Libby Kinsey -
2019 : AI in Healthcare: Working Towards Positive Clinical Impact »
Nenad Tomasev -
2019 : Alan Karthikesalingam & Nenad Tomasev Talk »
Nenad Tomasev -
2019 Poster: A neurally plausible model learns successor representations in partially observable environments »
Eszter Vértes · Maneesh Sahani -
2019 Oral: A neurally plausible model learns successor representations in partially observable environments »
Eszter Vértes · Maneesh Sahani -
2018 Poster: Flexible and accurate inference and learning for deep generative models »
Eszter Vértes · Maneesh Sahani