Timezone: »
Effectively exploring the environment is a key challenge in reinforcement learning (RL). We address this challenge by defining a novel intrinsic reward based on a foundation model, such as contrastive language image pretraining (CLIP), which can encode a wealth of domain-independent semantic visual-language knowledge about the world. Specifically, our intrinsic reward is defined based on pre-trained CLIP embeddings without any fine-tuning or learning on the target RL task. We demonstrate that CLIP-based intrinsic rewards can drive exploration towards semantically meaningful states and outperform state-of-the-art methods in challenging sparse-reward procedurally-generated environments.
Author Information
Tarun Gupta (University of Oxford)
Peter Karkus (NVIDIA Research)
I am a researcher in machine learning and robotics with a long-term vision of building human-level robot intelligence. My research focuses on autonomous vehicles and embodied AI that combines learning with structure and reasoning. My recent works are on neural networks that encode classic robot algorithms in order to learn partially observable planning, visual navigation, localization, and mapping tasks.
Tong Che (MILA, Montreal)
Danfei Xu (Georgia Institute of Technology)
Marco Pavone (Stanford University)
More from the Same Authors
-
2022 : DiffStack: A Differentiable and Modular Control Stack for Autonomous Vehicles »
Peter Karkus · Boris Ivanovic · Shie Mannor · Marco Pavone -
2022 : Robust Trajectory Prediction against Adversarial Attacks »
Yulong Cao · Danfei Xu · Xinshuo Weng · Zhuoqing Morley Mao · Anima Anandkumar · Chaowei Xiao · Marco Pavone -
2022 : AdvDO: Realistic Adversarial Attacks for Trajectory Prediction »
Yulong Cao · Chaowei Xiao · Anima Anandkumar · Danfei Xu · Marco Pavone -
2022 : ProgPrompt: Generating Situated Robot Task Plans using Large Language Models »
Ishika Singh · Valts Blukis · Arsalan Mousavian · Ankit Goyal · Danfei Xu · Jonathan Tremblay · Dieter Fox · Jesse Thomason · Animesh Garg -
2022 : Conformal Semantic Keypoint Detection with Statistical Guarantees »
Heng Yang · Marco Pavone -
2022 : Sparse Mixture-of-Experts are Domain Generalizable Learners »
Bo Li · Yifei Shen · Jingkang Yang · Yezhen Wang · Jiawei Ren · Tong Che · Jun Zhang · Ziwei Liu -
2022 : Expanding the Deployment Envelope of Behavior Prediction via Adaptive Meta-Learning »
Boris Ivanovic · James Harrison · Marco Pavone -
2022 : Guided Skill Learning and Abstraction for Long-Horizon Manipulation »
Shuo Cheng · Danfei Xu -
2022 : Conformal Semantic Keypoint Detection with Statistical Guarantees »
Heng Yang · Marco Pavone -
2023 Poster: PAC-Bayes Generalization Certificates for Learned Inductive Conformal Prediction »
Apoorva Sharma · Sushant Veer · Asher Hancock · Heng Yang · Marco Pavone · Anirudha Majumdar -
2023 Poster: trajdata: A Unified Interface to Multiple Human Trajectory Datasets »
Boris Ivanovic · Guanyu Song · Igor Gilitschenski · Marco Pavone -
2022 : Invited Talk: Marco Pavone »
Marco Pavone -
2021 Poster: Data Sharing and Compression for Cooperative Networked Control »
Jiangnan Cheng · Marco Pavone · Sachin Katti · Sandeep Chinchali · Ao Tang -
2020 Poster: Continuous Meta-Learning without Tasks »
James Harrison · Apoorva Sharma · Chelsea Finn · Marco Pavone -
2020 Poster: Evidential Sparsification of Multimodal Latent Spaces in Conditional Variational Autoencoders »
Masha Itkina · Boris Ivanovic · Ransalu Senanayake · Mykel J Kochenderfer · Marco Pavone -
2019 : Posters »
Colin Graber · Yuan-Ting Hu · Tiantian Fang · Jessica Hamrick · Giorgio Giannone · John Co-Reyes · Boyang Deng · Eric Crawford · Andrea Dittadi · Peter Karkus · Matthew Dirks · Rakshit Trivedi · Sunny Raj · Javier Felip Leon · Harris Chan · Jan Chorowski · Jeff Orchard · Aleksandar Stanić · Adam Kortylewski · Ben Zinberg · Chenghui Zhou · Wei Sun · Vikash Mansinghka · Chun-Liang Li · Marco Cusumano-Towner -
2019 : Marco Pavone: On Safe and Efficient Human-robot Interactions via Multi-modal Intent Modeling and Reachability-based Safety Assurance »
Marco Pavone -
2019 Poster: High-Dimensional Optimization in Adaptive Random Subspaces »
Jonathan Lacotte · Mert Pilanci · Marco Pavone -
2018 : Panel »
Yimeng Zhang · Alfredo Canziani · Marco Pavone · Dorsa Sadigh · Kurt Keutzer -
2018 : Invited Talk: Marco Pavone, Stanford »
Marco Pavone -
2017 Poster: QMDP-Net: Deep Learning for Planning under Partial Observability »
Peter Karkus · David Hsu · Wee Sun Lee -
2016 Poster: Architectural Complexity Measures of Recurrent Neural Networks »
Saizheng Zhang · Yuhuai Wu · Tong Che · Zhouhan Lin · Roland Memisevic · Russ Salakhutdinov · Yoshua Bengio -
2015 Poster: Risk-Sensitive and Robust Decision-Making: a CVaR Optimization Approach »
Yinlam Chow · Aviv Tamar · Shie Mannor · Marco Pavone