Timezone: »
Robotics has long been a field riddled with complex systems architectures whose modules and connections, whether traditional or learning-based, require significant human expertise and prior knowledge. Inspired by large pre-trained language models, this work introduces a paradigm for pre-training a general purpose representation that can serve as a starting point for multiple tasks on a given robot. We present the Perception-Action Causal Transformer (PACT), a generative transformer-based architecture that aims to build representations directly from robot data in a self-supervised fashion. Through autoregressive prediction of states and actions over time, our model implicitly encodes dynamics and behaviors for a particular robot. Our experimental evaluation focuses on the domain of mobile agents, where we show that this robot-specific representation can function as a single starting point to achieve distinct tasks such as safe navigation, localization and mapping. We evaluate two form factors: a wheeled robot that uses a LiDAR sensor as perception input (MuSHR), and a simulated agent that uses first-person RGB images (Habitat). We show that finetuning small task-specific networks on top of the larger pretrained model results in significantly better performance compared to training a single model from scratch for all tasks simultaneously, and comparable performance to training a separate large model for each task independently. By sharing a common good-quality representation across tasks we can lower overall model capacity and speed up the real-time deployment of such systems.
Author Information
Rogerio Bonatti (Microsoft)
Sai Vemprala (Microsoft)
shuang ma (Microsoft)
Felipe Vieira Frujeri (Microsoft Research)
Shuhang Chen (University of Florida)
Ashish Kapoor (Microsoft)
More from the Same Authors
-
2020 : Paper 64: Modeling Affect-based Intrinsic Rewards for Exploration and Learning »
Daniel McDuff · Ashish Kapoor -
2021 Spotlight: Representation Learning for Event-based Visuomotor Policies »
Sai Vemprala · Sami Mian · Ashish Kapoor -
2022 : SMART: Self-supervised Multi-task pretrAining with contRol Transformers »
Yanchao Sun · shuang ma · Ratnesh Madaan · Rogerio Bonatti · Furong Huang · Ashish Kapoor -
2022 : LATTE: LAnguage Trajectory TransformEr »
A Bucker · Luis Figueredo · Sami Haddadin · Ashish Kapoor · shuang ma · Sai Vemprala · Rogerio Bonatti -
2022 : Towards Data-Driven Offline Simulations for Online Reinforcement Learning »
Shengpu Tang · Felipe Vieira Frujeri · Dipendra Misra · Alex Lamb · John Langford · Paul Mineiro · Sebastian Kochman -
2023 Poster: Evaluating Cognitive Maps in Large Language Models: No Emergent Planning »
Ida Momennejad · Felipe Vieira Frujeri · Hosein Hasanbeig · Hamid Palangi · Nebojsa Jojic · Robert Ness · Jonathan Larson -
2022 Poster: MoCapAct: A Multi-Task Dataset for Simulated Humanoid Control »
Nolan Wagener · Andrey Kolobov · Felipe Vieira Frujeri · Ricky Loynd · Ching-An Cheng · Matthew Hausknecht -
2022 Poster: Learning Modular Simulations for Homogeneous Systems »
Jayesh Gupta · Sai Vemprala · Ashish Kapoor -
2022 Poster: 3DB: A Framework for Debugging Computer Vision Models »
Guillaume Leclerc · Hadi Salman · Andrew Ilyas · Sai Vemprala · Logan Engstrom · Vibhav Vineet · Kai Xiao · Pengchuan Zhang · Shibani Santurkar · Greg Yang · Ashish Kapoor · Aleksander Madry -
2021 Poster: Contrastive Learning of Global and Local Video Representations »
shuang ma · Zhaoyang Zeng · Daniel McDuff · Yale Song -
2021 Poster: Representation Learning for Event-based Visuomotor Policies »
Sai Vemprala · Sami Mian · Ashish Kapoor -
2021 Poster: Unadversarial Examples: Designing Objects for Robust Vision »
Hadi Salman · Andrew Ilyas · Logan Engstrom · Sai Vemprala · Aleksander Madry · Ashish Kapoor -
2020 Poster: Do Adversarially Robust ImageNet Models Transfer Better? »
Hadi Salman · Andrew Ilyas · Logan Engstrom · Ashish Kapoor · Aleksander Madry -
2020 Oral: Do Adversarially Robust ImageNet Models Transfer Better? »
Hadi Salman · Andrew Ilyas · Logan Engstrom · Ashish Kapoor · Aleksander Madry -
2020 Poster: Denoised Smoothing: A Provable Defense for Pretrained Classifiers »
Hadi Salman · Mingjie Sun · Greg Yang · Ashish Kapoor · J. Zico Kolter -
2020 Poster: Multi-Robot Collision Avoidance under Uncertainty with Probabilistic Safety Barrier Certificates »
Wenhao Luo · Wen Sun · Ashish Kapoor -
2020 Spotlight: Multi-Robot Collision Avoidance under Uncertainty with Probabilistic Safety Barrier Certificates »
Wenhao Luo · Wen Sun · Ashish Kapoor -
2019 : The Game of Drones Competition »
Charbel Toumieh · Sai Vemprala · Sangyun Shin · Rahul Kumar · Andrey Ivanov · Hyunchul Shim · Jose Martinez-Carranza · Nicholas Gyde · Ashish Kapoor · Keiko Nagami · Tim Taubner · Ratnesh Madaan · Antony Gillette · Paul Stubbs -
2019 : Lunch + Poster Session »
Frederik Gerzer · Bill Yang Cai · Pieter-Jan Hoedt · Kelly Kochanski · Soo Kyung Kim · Yunsung Lee · Sunghyun Park · Sharon Zhou · Martin Gauch · Jonathan Wilson · Joyjit Chatterjee · Shamindra Shrotriya · Dimitri Papadimitriou · Christian Schön · Valentina Zantedeschi · Gabriella Baasch · Willem Waegeman · Gautier Cosne · Dara Farrell · Brendan Lucier · Letif Mones · Caleb Robinson · Tafara Chitsiga · Victor Kristof · Hari Prasanna Das · Yimeng Min · Alexandra Puchko · Alexandra Luccioni · Kyle Story · Jason Hickey · Yue Hu · Björn Lütjens · Zhecheng Wang · Renzhi Jing · Genevieve Flaspohler · Jingfan Wang · Saumya Sinha · Qinghu Tang · Armi Tiihonen · Ruben Glatt · Muge Komurcu · Jan Drgona · Juan Gomez-Romero · Ashish Kapoor · Dylan J Fitzpatrick · Alireza Rezvanifar · Adrian Albert · Olya (Olga) Irzak · Kara Lamb · Ankur Mahesh · Kiwan Maeng · Frederik Kratzert · Sorelle Friedler · Niccolo Dalmasso · Alex Robson · Lindiwe Malobola · Lucas Maystre · Yu-wen Lin · Surya Karthik Mukkavili · Brian Hutchinson · Alexandre Lacoste · Yanbing Wang · Zhengcheng Wang · Yinda Zhang · Victoria Preston · Jacob Pettit · Draguna Vrabie · Miguel Molina-Solana · Tonio Buonassisi · Andrew Annex · Tunai P Marques · Catalin Voss · Johannes Rausch · Max Evans -
2019 Poster: Characterizing Bias in Classifiers using Generative Models »
Daniel McDuff · Shuang Ma · Yale Song · Ashish Kapoor -
2019 Poster: Bias Correction of Learned Generative Models using Likelihood-Free Importance Weighting »
Aditya Grover · Jiaming Song · Ashish Kapoor · Kenneth Tran · Alekh Agarwal · Eric Horvitz · Stefano Ermon -
2016 Poster: Quantum Perceptron Models »
Ashish Kapoor · Nathan Wiebe · Krysta Svore -
2015 : Machine Learning as Rotations (Quantum Deep Learning) »
Ashish Kapoor -
2012 Poster: Multilabel Classification using Bayesian Compressed Sensing »
Ashish Kapoor · Raajay Viswanathan · Prateek Jain -
2009 Workshop: Analysis and Design of Algorithms for Interactive Machine Learning »
Sumit Basu · Ashish Kapoor -
2009 Poster: Breaking Boundaries Between Induction Time and Diagnosis Time Active Information Acquisition »
Ashish Kapoor · Eric Horvitz