Timezone: »
The global carbon cycle is a key process to understand how our climate is changing. However, monitoring the dynamics is difficult because a high-resolution robust measurement of key state parameters including the aboveground carbon biomass (AGB) is required. We use deep neural network to generate a wall-to-wall map of AGB within the Continental USA (CONUS) with 30-meter spatial resolution for the year 2021. We combine radar and optical hyperspectral imagery, with a physical climate parameter of solar-induced chlorophyll fluorescence (SIF)-based gross primary productivity (GPP). Validation results show that a masked variation of UNet has the lowest validation RMSE of 37.93 ± 1.36 Mg C/ha, as compared to 52.30 ± 0.03 Mg C/ha for random forest algorithm. Furthermore, models that learn from SIF-based GPP in addition to radar and optical imagery reduce validation RMSE by almost 10% and the standard deviation by 40%. Finally, we apply our model to measure losses in AGB from the recent 2021 Caldor wildfire in California, and validate our analysis with Sentinel-based burn index.
Author Information
Juan Nathaniel (Columbia University)
(None)
Campbell Watson (IBM Research)
I'm an atmospheric scientist at IBM Research where my research spans climate, weather and water. I was a postdoc at Yale University with Prof. Ron Smith, and completed a PhD at the University of Melbourne with Prof. Todd Lane. Currently leading AI for Climate initiatives with the Future of Climate at IBM Research.
Gabrielle Nyirjesy (Columbia University)
Gabby Nyirjesy is a Master’s in Data Science student at Columbia University. Her prior education includes a B.S. in Materials Science and Engineering from Johns Hopkins University in 2016. Gabby has 5 years of experience implementing machine learning models for her clients at Accenture.
Conrad Albrecht (IBM Research)
More from the Same Authors
-
2020 : Investigating two super-resolution methods for downscaling precipitation: ESRGAN and CAR »
Campbell Watson -
2021 : Addressing Deep Learning Model Uncertainty in Long-Range Climate Forecasting with Late Fusion »
Ken C. L. Wong · Hongzhi Wang · Etienne Vos · Bianca Zadrozny · Campbell Watson · Tanveer Syeda-Mahmood -
2021 : S3RP: Self-Supervised Super-Resolution and Prediction for Advection-Diffusion Process »
Chulin Wang · Kyongmin Yeo · Andres Codas · Xiao Jin · Bruce Elmegreen · -
2022 : Source Identification and Field Reconstruction of Advection-Diffusion Process from Sparse Sensor Measurements »
Arka Daw · Kyongmin Yeo · Anuj Karpatne · -
2022 : Physics-Constrained Deep Learning for Climate Downscaling »
Paula Harder · Qidong Yang · Venkatesh Ramesh · Prasanna Sattigeri · Alex Hernandez-Garcia · Campbell Watson · Daniela Szwarcman · David Rolnick -
2022 : Image-Based Soil Organic Carbon Estimation from Multispectral Satellite Images with Fourier Neural Operator and Structural Similarity »
Ken C. L. Wong · · Ademir Ferreira da Silva · Hongzhi Wang · Jitendra Singh · Tanveer Syeda-Mahmood -
2022 : Controllable Generation for Climate Modeling »
Moulik Choraria · Daniela Szwarcman · Bianca Zadrozny · Campbell Watson · Lav Varshney -
2022 : Generating physically-consistent high-resolution climate data with hard-constrained neural networks »
Paula Harder · Qidong Yang · Venkatesh Ramesh · Prasanna Sattigeri · Alex Hernandez-Garcia · Campbell Watson · Daniela Szwarcman · David Rolnick -
2022 : FIRO: A Deep-neural Network for Wildfire Forecast with Interpretable Hidden States »
Eduardo Rodrigues · Campbell Watson · Bianca Zadrozny · Gabrielle Nyirjesy -
2022 : Direct Sampling for extreme weather generation »
Jorge Luis Guevara Diaz · Bianca Zadrozny · Campbell Watson · Daniela Szwarcman · Debora Lima · Dilermando Queiroz · Leonardo Tizzei · Maria Garcia · Maysa Macedo · Priscilla Avegliano -
2022 : FIRO: A Deep-neural Network for Wildfire Forecast with Interpretable Hidden States »
Eduardo Rodrigues · Campbell Watson · Bianca Zadrozny · Gabrielle Nyirjesy