Timezone: »
In contrast to the rapid digitalization of several industries, agriculture suffers from low adoption of climate-smart farming tools. Even though AI-driven digital agriculture can offer high-performing predictive functionalities, they lack tangible quantitative evidence on their benefits to the farmers. Field experiments can derive such evidence, but are often costly and time consuming. To this end, we propose an observational causal inference framework for the empirical evaluation of the impact of digital tools on target farm performance indicators. This way, we can increase farmers' trust via enhancing the transparency of the digital agriculture market, and in turn accelerate the adoption of technologies that aim to increase productivity and secure a sustainable and resilient agriculture against a changing climate. As a case study, we perform an empirical evaluation of a recommendation system for optimal cotton sowing, which was used by a farmers' cooperative during the growing season of 2021. We leverage agricultural knowledge to develop the causal graph of the farm system, we use the back-door criterion to identify the impact of recommendations on the yield and subsequently we estimate it using several methods on observational data. The results showed that a field sown according to our recommendations enjoyed a significant increase in yield 12% to 17%.
Author Information
Ilias Tsoumas (Special Research Account Department (EL 997028265)National Observatory of Athens)
Research Associate & Data Scientist in the Operational Unit BEYOND Centre | IAASARS | National Observatory of Athens Ph.D. Student in the Wageningen University & Research
GEORGIOS GIANNARAKIS (Special Research Account Department (EL 997028265)National Observatory of Athens)
Vasileios Sitokonstantinou (National Observatory of Athens)
Alkiviadis Marios Koukos (National Observatory of Athens)
Dimitra Loka (Hellenic Agricultural Organization ELGO DIMITRA)
Nikolaos Bartsotas (National Observatory of Athens)
Charalampos Kontoes (National Observatory of Athens)
Ioannis Athanasiadis (Wageningen University and Research)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 : Evaluating Digital Tools for Sustainable Agriculture using Causal Inference »
Dates n/a. Room
More from the Same Authors
-
2022 : Towards Global Crop Maps with Transfer Learning »
Hyun-Woo Jo · Alkiviadis Marios Koukos · Vasileios Sitokonstantinou · Woo-Kyun Lee · Charalampos Kontoes -
2022 : Personalizing Sustainable Agriculture with Causal Machine Learning »
GEORGIOS GIANNARAKIS · Vasileios Sitokonstantinou · Roxanne Suzette Lorilla · Charalampos Kontoes -
2022 : Personalizing Sustainable Agriculture with Causal Machine Learning »
GEORGIOS GIANNARAKIS · Vasileios Sitokonstantinou · Roxanne Suzette Lorilla · Charalampos Kontoes -
2022 Poster: Learning Long-Term Crop Management Strategies with CyclesGym »
Matteo Turchetta · Luca Corinzia · Scott Sussex · Amanda Burton · Juan Herrera · Ioannis Athanasiadis · Joachim M Buhmann · Andreas Krause