Timezone: »
An Unsupervised Learning Perspective on the Dynamic Contribution to Extreme Precipitation Changes
Griffin Mooers · Tom Beucler · Mike Pritchard · Stephan Mandt
Event URL: https://www.climatechange.ai/papers/neurips2022/81 »
Despite the importance of quantifying how the spatial patterns of extreme precipitation will change with warming, we lack tools to objectively analyze the storm-scale outputs of modern climate models. To address this gap, we develop an unsupervised machine learning framework to quantify how storm dynamics affect precipitation extremes and their changes without sacrificing spatial information. Over a wide range of precipitation quantiles, we find that the spatial patterns of extreme precipitation changes are dominated by spatial shifts in storm regimes rather than intrinsic changes in how these storm regimes produce precipitation.
Author Information
Griffin Mooers (UC Irvine)
Tom Beucler (University of Lausanne)
Mike Pritchard (University of California, Irvine)
Stephan Mandt (University of California, Irvine)
More from the Same Authors
-
2021 : Analyzing High-Resolution Clouds and Convection using Multi-Channel VAEs »
Harshini Mangipudi · Griffin Mooers · Mike Pritchard · Tom Beucler · Stephan Mandt -
2021 : Structured Stochastic Gradient MCMC: a hybrid VI and MCMC approach »
Antonios Alexos · Alex Boyd · Stephan Mandt -
2022 : Probabilistic Querying of Continuous-Time Sequential Events »
Alex Boyd · Yuxin Chang · Stephan Mandt · Padhraic Smyth -
2022 : Q & A »
Karen Ullrich · Yibo Yang · Stephan Mandt -
2022 Tutorial: Data Compression with Machine Learning »
Karen Ullrich · Yibo Yang · Stephan Mandt -
2022 : Tutorial part 1 »
Yibo Yang · Karen Ullrich · Stephan Mandt -
2022 Poster: Predictive Querying for Autoregressive Neural Sequence Models »
Alex Boyd · Samuel Showalter · Stephan Mandt · Padhraic Smyth -
2021 Poster: Detecting and Adapting to Irregular Distribution Shifts in Bayesian Online Learning »
Aodong Li · Alex Boyd · Padhraic Smyth · Stephan Mandt -
2020 : Q/A and Discussion for ML Theory Session »
Karthik Kashinath · Mayur Mudigonda · Stephan Mandt · Rose Yu -
2020 : Stephan Mandt »
Stephan Mandt -
2020 : Q/A and Discussion for Atmosphere Session »
Tom Beucler · Mike Pritchard · Elizabeth A. Barnes -
2020 : Michael Pritchard »
Mike Pritchard