Timezone: »

 
An Unsupervised Learning Perspective on the Dynamic Contribution to Extreme Precipitation Changes
Griffin Mooers · Tom Beucler · Mike Pritchard · Stephan Mandt
Event URL: https://www.climatechange.ai/papers/neurips2022/81 »

Despite the importance of quantifying how the spatial patterns of extreme precipitation will change with warming, we lack tools to objectively analyze the storm-scale outputs of modern climate models. To address this gap, we develop an unsupervised machine learning framework to quantify how storm dynamics affect precipitation extremes and their changes without sacrificing spatial information. Over a wide range of precipitation quantiles, we find that the spatial patterns of extreme precipitation changes are dominated by spatial shifts in storm regimes rather than intrinsic changes in how these storm regimes produce precipitation.

Author Information

Griffin Mooers (UC Irvine)
Tom Beucler (University of Lausanne)
Mike Pritchard (University of California, Irvine)
Stephan Mandt (University of California, Irvine)

More from the Same Authors