Timezone: »
Compared to rural areas, urban areas experience higher temperatures for longer periods of time because of the urban heat island (UHI) effect. This increased heat stress leads to greater mortality, increased energy demand, regional changes to precipitation patterns, and increased air pollution. Urban developers can minimize the UHI effect by incorporating features that promote air flow and heat dispersion (e.g., increasing green space). However, understanding which urban features to implement is complex, as local meteorology strongly dictates how the environment responds to changes in urban form. In this proposal we describe a methodology for estimating the causal relationship between changes in urban form and changes in the UHI effect. Changes in urban form and temperature changes are measured using convolutional neural networks, and a causal inference matching approach is proposed to estimate causal relationships. The success of this methodology will enable urban developers to implement city-specific interventions to mitigate the warming planet's impact on cities.
Author Information
Zachary D Calhoun (Duke University)
I am an environmental engineering PhD student at Duke University. I study how to apply machine learning to better understand air pollution.
Ziyang Jiang (Duke University)
Mike Bergin (Duke University)
David Carlson (Duke University)
More from the Same Authors
-
2021 : Contrastive Learning for PM2.5 Prediction from Satellite Imagery »
Ziyang Jiang · David Carlson -
2021 : Contrastive Learning for PM2.5 Prediction from Satellite Imagery »
Ziyang Jiang · David Carlson -
2022 : Variational Bayesian Inference and Learning for Continuous Switching Linear Dynamical Systems »
Jack Goffinet · David Carlson -
2021 : Contrastive Learning for PM2.5 Prediction from Satellite Imagery »
Ziyang Jiang -
2021 Poster: Directed Spectrum Measures Improve Latent Network Models Of Neural Populations »
Neil Gallagher · Kafui Dzirasa · David Carlson -
2018 Poster: Extracting Relationships by Multi-Domain Matching »
Yitong Li · michael Murias · geraldine Dawson · David Carlson -
2017 Spotlight: Targeting EEG/LFP Synchrony with Neural Nets »
Yitong Li · michael Murias · samantha Major · geraldine Dawson · Kafui Dzirasa · Lawrence Carin · David Carlson -
2017 Poster: Targeting EEG/LFP Synchrony with Neural Nets »
Yitong Li · michael Murias · samantha Major · geraldine Dawson · Kafui Dzirasa · Lawrence Carin · David Carlson -
2017 Poster: YASS: Yet Another Spike Sorter »
Jin Hyung Lee · David Carlson · Hooshmand Shokri Razaghi · Weichi Yao · Georges A Goetz · Espen Hagen · Eleanor Batty · E.J. Chichilnisky · Gaute T. Einevoll · Liam Paninski -
2017 Poster: Cross-Spectral Factor Analysis »
Neil Gallagher · Kyle Ulrich · Austin Talbot · Kafui Dzirasa · Lawrence Carin · David Carlson -
2015 Poster: GP Kernels for Cross-Spectrum Analysis »
Kyle R Ulrich · David Carlson · Kafui Dzirasa · Lawrence Carin -
2015 Poster: Preconditioned Spectral Descent for Deep Learning »
David Carlson · Edo Collins · Ya-Ping Hsieh · Lawrence Carin · Volkan Cevher -
2015 Poster: Deep Temporal Sigmoid Belief Networks for Sequence Modeling »
Zhe Gan · Chunyuan Li · Ricardo Henao · David Carlson · Lawrence Carin -
2014 Poster: Analysis of Brain States from Multi-Region LFP Time-Series »
Kyle R Ulrich · David Carlson · Wenzhao Lian · Jana S Borg · Kafui Dzirasa · Lawrence Carin -
2014 Poster: On the relations of LFPs & Neural Spike Trains »
David Carlson · Jana Schaich Borg · Kafui Dzirasa · Lawrence Carin -
2013 Poster: Designed Measurements for Vector Count Data »
Liming Wang · David Carlson · Miguel Rodrigues · David Wilcox · Robert Calderbank · Lawrence Carin -
2013 Poster: Real-Time Inference for a Gamma Process Model of Neural Spiking »
David Carlson · Vinayak Rao · Joshua T Vogelstein · Lawrence Carin -
2011 Poster: On the Analysis of Multi-Channel Neural Spike Data »
Bo Chen · David Carlson · Lawrence Carin