Timezone: »
Measuring and monitoring soil organic carbon is critical for agricultural productivity and for addressing critical environmental problems. Soil organic carbon not only enriches nutrition in soil, but also has a gamut of co-benefits such as improving water storage and limiting physical erosion. Despite a litany of work in soil organic carbon estimation, current approaches do not generalize well across soil conditions and management practices. We empirically show that explicit modeling of cause-and-effect relationships among the soil processes improves the out-of-distribution generalizability of prediction models. We provide a comparative analysis of soil organic carbon estimation models where the skeleton is estimated using causal discovery methods. Our framework provide an average improvement of 81% in test mean squared error and 52% in test mean absolute error.
Author Information
Somya Sharma (University of Minnesota)
Swati Sharma (Microsoft Research)
Emre Kiciman (Microsoft Research)
Andy Neal (Rothamstead)
Ranveer Chandra (Microsoft)
John Crawford (University of Glasgow)
Sara Malvar (Microsoft)
Eduardo Rodrigues (Microsoft Research)
More from the Same Authors
-
2021 : Unsupervised Machine Learning framework for sensor placement optimization: analyzing methane leaks »
Shirui Wang · Sara Malvar · Leonardo Nunes · Kim Whitehall · Yagna D Oruganti · Yazeed Alaudah · Anirudh Badam -
2021 : Approximate Bayesian Computation for Physical Inverse Modeling »
Neel Chatterjee · Somya Sharma · Ansu Chatterjee -
2021 : Causality with Susan Athey, Konrad Kording, Amit Sharma »
Susan Athey · Konrad Kording · Amit Sharma · Emre Kiciman -
2022 : Industry-scale CO2 Flow Simulations with Model-Parallel Fourier Neural Operators »
Philipp Witte · Russell J. Hewett · Ranveer Chandra -
2022 : FIRO: A Deep-neural Network for Wildfire Forecast with Interpretable Hidden States »
Eduardo Rodrigues · Campbell Watson · Bianca Zadrozny · Gabrielle Nyirjesy -
2022 : Using Interventions to Improve Out-of-Distribution Generalization of Text-Matching Systems »
Parikshit Bansal · Yashoteja Prabhu · Emre Kiciman · Amit Sharma -
2022 : Using Interventions to Improve Out-of-Distribution Generalization of Text-Matching Systems »
Parikshit Bansal · Yashoteja Prabhu · Emre Kiciman · Amit Sharma -
2022 : A Causal AI Suite for Decision-Making »
Emre Kiciman · Eleanor Dillon · Darren Edge · Adam Foster · Joel Jennings · Chao Ma · Robert Ness · Nick Pawlowski · Amit Sharma · Cheng Zhang -
2022 : Deep End-to-end Causal Inference »
Tomas Geffner · Javier AntorĂ¡n · Adam Foster · Wenbo Gong · Chao Ma · Emre Kiciman · Amit Sharma · Angus Lamb · Martin Kukla · Nick Pawlowski · Miltiadis Allamanis · Cheng Zhang -
2022 : FIRO: A Deep-neural Network for Wildfire Forecast with Interpretable Hidden States »
Eduardo Rodrigues · Campbell Watson · Bianca Zadrozny · Gabrielle Nyirjesy -
2022 : A Causal AI Suite for Decision-Making »
Emre Kiciman -
2020 : Spotlight: Climate Change Driven Crop Yield Failures »
Somya Sharma -
2020 Poster: AvE: Assistance via Empowerment »
Yuqing Du · Stas Tiomkin · Emre Kiciman · Daniel Polani · Pieter Abbeel · Anca Dragan -
2007 Workshop: Machine Learning for Systems Problems (Part 2) »
Archana Ganapathi · Sumit Basu · Fei Sha · Emre Kiciman -
2007 Workshop: Machine Learning for Systems Problems (Part 1) »
Archana Ganapathi · Sumit Basu · Fei Sha · Emre Kiciman -
2007 Poster: Fast Variational Inference for Large-scale Internet Diagnosis »
John C Platt · Emre Kiciman · David A Maltz