Timezone: »
Aerosol-cloud interactions constitute the largest source of uncertainty in assessments of the anthropogenic climate change. This uncertainty arises in part from the difficulty in measuring the vertical distributions of aerosols. We often have to settle for less informative vertically aggregated proxies such as aerosol optical depth (AOD). In this work, we develop a framework to infer vertical aerosol profiles using AOD and readily available vertically resolved meteorological predictors such as temperature or relative humidity. We devise a simple Gaussian process prior over aerosol vertical profiles and update it with AOD observations. We validate our approach using ECHAM-HAM aerosol-climate model data. Our results show that, while simple, our model is able to reconstruct realistic extinction profiles with well-calibrated uncertainty. In particular, the model demonstrates a faithful reconstruction of extinction patterns arising from aerosol water uptake in the boundary layer.
Author Information
Shahine Bouabid (University of Oxford)
Duncan Watson-Parris (University of Oxford)
Dino Sejdinovic (University of Adelaide)
More from the Same Authors
-
2020 : Predicting Landsat Reflectance with Deep Generative Fusion »
Shahine Bouabid -
2021 : Using Non-Linear Causal Models to Study Aerosol-Cloud Interactions in the Southeast Pacific »
Andrew Jesson · Peter Manshausen · Alyson Douglas · Duncan Watson-Parris · Yarin Gal · Philip Stier -
2021 : Using Non-Linear Causal Models to StudyAerosol-Cloud Interactions in the Southeast Pacific »
Andrew Jesson · Peter Manshausen · Alyson Douglas · Duncan Watson-Parris · Yarin Gal · Philip Stier -
2022 : Exploring Randomly Wired Neural Networks for Climate Model Emulation »
William Yik · Sam Silva · Andrew Geiss · Duncan Watson-Parris -
2022 : Identifying causes of Pyrocumulonimbus (PyroCb) »
Emiliano Diaz · Kenza Tazi · Ashwin Braude · Daniel Okoh · Kara Lamb · Duncan Watson-Parris · Paula Harder · Nis Meinert -
2023 Poster: A Rigorous Link between Deep Ensembles and (Variational) Bayesian Methods »
Veit David Wild · Sahra Ghalebikesabi · Dino Sejdinovic · Jeremias Knoblauch -
2023 Poster: Explaining the Uncertain: Stochastic Shapley Values for Gaussian Process Models »
Siu Lun Chau · Krikamol Muandet · Dino Sejdinovic -
2023 Poster: Squared Neural Families: A New Class of Tractable Density Models »
Russell Tsuchida · Cheng Soon Ong · Dino Sejdinovic -
2023 Oral: A Rigorous Link between Deep Ensembles and (Variational) Bayesian Methods »
Veit David Wild · Sahra Ghalebikesabi · Dino Sejdinovic · Jeremias Knoblauch -
2022 Poster: Giga-scale Kernel Matrix-Vector Multiplication on GPU »
Robert Hu · Siu Lun Chau · Dino Sejdinovic · Joan Glaunès -
2022 Poster: Explaining Preferences with Shapley Values »
Robert Hu · Siu Lun Chau · Jaime Ferrando Huertas · Dino Sejdinovic -
2022 Poster: RKHS-SHAP: Shapley Values for Kernel Methods »
Siu Lun Chau · Robert Hu · Javier González · Dino Sejdinovic -
2022 Poster: Generalized Variational Inference in Function Spaces: Gaussian Measures meet Bayesian Deep Learning »
Veit David Wild · Robert Hu · Dino Sejdinovic -
2021 Poster: Deconditional Downscaling with Gaussian Processes »
Siu Lun Chau · Shahine Bouabid · Dino Sejdinovic