Timezone: »
Regulators and academics are increasingly interested in the causal effect that algorithmic actions of a digital platform have on consumption. We introduce a general causal inference problem we call the steerability of consumption that abstracts many settings of interest. Focusing on observational designs, we exhibit a set of assumptions for identifiability that significantly weakens the often unrealistic coverage assumptions of standard designs. They key insight behind our assumptions is to model the dynamics of consumption, viewing the platform as a controller acting on a dynamical system. From this dynamical systems perspective, we are able to show that exogenous variation in consumption and appropriately responsive control actions are sufficient for indentifying steerability of consumption. Our results illustrate the fruitful interplay of control theory and causal inference, which we illustrate with examples from econometrics, macroeconomics, and machine learning.
Author Information
Gary Cheng (Stanford University)
Moritz Hardt (Max Planck Institute for Intelligent Systems, Tübingen)
Celestine Mendler-Dünner (Max Planck Institute for Intelligent Systems)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 : Causal Inference out of Control: Identifying the Steerability of Consumption »
Sat. Dec 3rd 09:30 -- 09:42 PM Room
More from the Same Authors
-
2021 : Alternative Microfoundations for Strategic Classification »
Meena Jagadeesan · Celestine Mendler-Dünner · Moritz Hardt -
2021 : Alternative Microfoundations for Strategic Classification »
Meena Jagadeesan · Celestine Mendler-Dünner · Moritz Hardt -
2022 : adaStar: A Method for Adapting to Interpolation »
Gary Cheng · John Duchi -
2022 : Panel »
Meena Jagadeesan · Avrim Blum · Jon Kleinberg · Celestine Mendler-Dünner · Jennifer Wortman Vaughan · Chara Podimata -
2022 : Poster Session 1 »
Andrew Lowy · Thomas Bonnier · Yiling Xie · Guy Kornowski · Simon Schug · Seungyub Han · Nicolas Loizou · xinwei zhang · Laurent Condat · Tabea E. Röber · Si Yi Meng · Marco Mondelli · Runlong Zhou · Eshaan Nichani · Adrian Goldwaser · Rudrajit Das · Kayhan Behdin · Atish Agarwala · Mukul Gagrani · Gary Cheng · Tian Li · Haoran Sun · Hossein Taheri · Allen Liu · Siqi Zhang · Dmitrii Avdiukhin · Bradley Brown · Miaolan Xie · Junhyung Lyle Kim · Sharan Vaswani · Xinmeng Huang · Ganesh Ramachandra Kini · Angela Yuan · Weiqiang Zheng · Jiajin Li -
2022 Poster: Performative Power »
Moritz Hardt · Meena Jagadeesan · Celestine Mendler-Dünner -
2022 Poster: Anticipating Performativity by Predicting from Predictions »
Celestine Mendler-Dünner · Frances Ding · Yixin Wang -
2021 Workshop: Learning and Decision-Making with Strategic Feedback (StratML) »
Yahav Bechavod · Hoda Heidari · Eric Mazumdar · Celestine Mendler-Dünner · Tijana Zrnic -
2021 Poster: Test-time Collective Prediction »
Celestine Mendler-Dünner · Wenshuo Guo · Stephen Bates · Michael Jordan -
2020 Poster: Stochastic Optimization for Performative Prediction »
Celestine Mendler-Dünner · Juan Perdomo · Tijana Zrnic · Moritz Hardt -
2020 Poster: Minibatch Stochastic Approximate Proximal Point Methods »
Hilal Asi · Karan Chadha · Gary Cheng · John Duchi -
2020 Spotlight: Minibatch Stochastic Approximate Proximal Point Methods »
Hilal Asi · Karan Chadha · Gary Cheng · John Duchi -
2019 Poster: SySCD: A System-Aware Parallel Coordinate Descent Algorithm »
Nikolas Ioannou · Celestine Mendler-Dünner · Thomas Parnell -
2019 Spotlight: SySCD: A System-Aware Parallel Coordinate Descent Algorithm »
Nikolas Ioannou · Celestine Mendler-Dünner · Thomas Parnell -
2018 Poster: Snap ML: A Hierarchical Framework for Machine Learning »
Celestine Dünner · Thomas Parnell · Dimitrios Sarigiannis · Nikolas Ioannou · Andreea Anghel · Gummadi Ravi · Madhusudanan Kandasamy · Haralampos Pozidis -
2017 Poster: Avoiding Discrimination through Causal Reasoning »
Niki Kilbertus · Mateo Rojas Carulla · Giambattista Parascandolo · Moritz Hardt · Dominik Janzing · Bernhard Schölkopf -
2017 Poster: Efficient Use of Limited-Memory Accelerators for Linear Learning on Heterogeneous Systems »
Celestine Dünner · Thomas Parnell · Martin Jaggi -
2016 Poster: Equality of Opportunity in Supervised Learning »
Moritz Hardt · Eric Price · Eric Price · Nati Srebro -
2015 Workshop: Adaptive Data Analysis »
Adam Smith · Aaron Roth · Vitaly Feldman · Moritz Hardt -
2015 Poster: Generalization in Adaptive Data Analysis and Holdout Reuse »
Cynthia Dwork · Vitaly Feldman · Moritz Hardt · Toni Pitassi · Omer Reingold · Aaron Roth -
2015 Poster: Differentially Private Learning of Structured Discrete Distributions »
Ilias Diakonikolas · Moritz Hardt · Ludwig Schmidt -
2014 Workshop: Fairness, Accountability, and Transparency in Machine Learning »
Moritz Hardt · Solon Barocas -
2014 Poster: The Noisy Power Method: A Meta Algorithm with Applications »
Moritz Hardt · Eric Price -
2014 Spotlight: The Noisy Power Method: A Meta Algorithm with Applications »
Moritz Hardt · Eric Price