Timezone: »
Structure-based drug design (SBDD) aims to design small-molecule ligands that bind with high affinity and specificity to pre-determined protein targets. Traditional SBDD pipelines start with large-scale docking of compound libraries from public databases, thus limiting the exploration of chemical space to existent previously studied regions. Recent machine learning methods approached this problem using an atom-by-atom generation approach, which is computationally expensive. In this paper, we formulate SBDD as a 3D-conditional generation problem and present DiffSBDD, an E(3)-equivariant 3D-conditional diffusion model that generates novel ligands conditioned on protein pockets. Furthermore, we curate a new dataset of experimentally determined binding complex data from Binding MOAD to provide a realistic binding scenario that complements the synthetic CrossDocked dataset. Comprehensive in silico experiments demonstrate the efficiency of DiffSBDD in generating novel and diverse drug-like ligands that engage protein pockets with high binding energies as predicted by in silico docking.
Author Information
Arne Schneuing (École Polytechnique Fédérale de Lausanne)
Yuanqi Du (Cornell University)
Charles Harris (University of Cambridge)
Arian Jamasb (University of Cambridge)
Ilia Igashov (EPFL)
weitao Du (University of Science and Technology of China)
Tom Blundell (University of Cambridge)
Professor Sir Tom Blundell, FRS, FMedSci, is a Biochemistry Director of Research in Cambridge. He worked with Dorothy Hodgkin in Oxford in the 1960s on structure of insulin and then in Sussex on glucagon in the 1970s Recently he focusses on DNA repair, defining structures of multicomponent the 4100 amino acid DNA-PKcs complexes using cryo-EM. Over the past 30 years he has produced software for homology modelling, called Modeller cited 13,000 times, and for predicting impacts of mutations in cancer and drug resistance using AI/ML methods, contributing to ~700 research papers. In 1970s Tom developed structure-guided drug discovery, and in 1999 pioneered fragment-based drug discovery, co-founding Astex, with two oncology drugs on the market. In academia he develops antibiotics targeting mycobacteria in leprosy and cystic fibrosis. In 1970 as a councillor and Chair of Oxford City Planning, he stopped a motorway planned to go through the city centre and instead pedestrianized the area. He chaired UK Royal Commission on Environment, 1998 to 2005.
Pietro Lió (University of Cambridge)
Carla Gomes (Cornell University)
Max Welling (Microsoft Research AI4Science / University of Amsterdam)
Michael Bronstein (Oxford)
Bruno Correia (Ecole Polytechnique Federale de Lausanne)
More from the Same Authors
-
2021 : GraphGT: Machine Learning Datasets for Graph Generation and Transformation »
Yuanqi Du · Shiyu Wang · Xiaojie Guo · Hengning Cao · Shujie Hu · Junji Jiang · Aishwarya Varala · Abhinav Angirekula · Liang Zhao -
2021 : Interpretable Data Analysis for Bench-to-Bedside Research »
Zohreh Shams · Botty Dimanov · Nikola Simidjievski · Helena Andres-Terre · Paul Scherer · Urška Matjašec · Mateja Jamnik · Pietro Lió -
2021 : Learning Disentangled Representation for Spatiotemporal Graph Generation »
Yuanqi Du · Xiaojie Guo · Hengning Cao · Yanfang (Fa Ye · Liang Zhao -
2021 : Gaussian Mixture Variational Autoencoder with Contrastive Learning for Multi-Label Classification »
Junwen Bai · Shufeng Kong · Carla Gomes -
2021 : Structure-aware generation of drug-like molecules »
Pavol Drotar · Arian Jamasb · Ben Day · Catalina Cangea · Pietro Lió -
2021 : 3D Pre-training improves GNNs for Molecular Property Prediction »
Hannes Stärk · Dominique Beaini · Gabriele Corso · Prudencio Tossou · Christian Dallago · Stephan Günnemann · Pietro Lió -
2021 : GraphGT: Machine Learning Datasets for Graph Generation and Transformation »
Yuanqi Du · Shiyu Wang · Xiaojie Guo · Hengning Cao · Shujie Hu · Junji Jiang · Aishwarya Varala · Abhinav Angirekula · Liang Zhao -
2021 : Physics-Augmented Learning: A New Paradigm Beyond Physics-Informed Learning »
Ziming Liu · Yuanqi Du · Yunyue Chen · Max Tegmark -
2021 : 3D Pre-training improves GNNs for Molecular Property Prediction »
Hannes Stärk · Gabriele Corso · Christian Dallago · Stephan Günnemann · Pietro Lió -
2021 : Approximate Latent Force Model Inference »
Jacob Moss · Felix Opolka · Pietro Lió -
2021 : Amortized Causal Discovery: Learning to Infer Causal Graphs from Time-Series Data »
Sindy Löwe · David Madras · Richard Zemel · Max Welling -
2021 : Particle Dynamics for Learning EBMs »
Kirill Neklyudov · Priyank Jaini · Max Welling -
2021 : Gaussian Mixture Variational Autoencoder with Contrastive Learning for Multi-Label Classification »
Junwen Bai · Shufeng Kong · Carla Gomes -
2021 : Learning Disentangled Representation for Spatiotemporal Graph Generation »
Yuanqi Du · Xiaojie Guo · Hengning Cao · Yanfang (Fa Ye · Liang Zhao -
2021 : Resolving Super Fine-Resolution SIF via Coarsely-Supervised U-Net Regression »
Joshua Fan · Di Chen · Jiaming Wen · Ying Sun · Carla Gomes -
2021 : A GNN-RNN Approach for Harnessing Geospatial and Temporal Information: Application to Crop Yield Prediction »
Joshua Fan · Junwen Bai · Zhiyun Li · Ariel Ortiz-Bobea · Carla Gomes -
2022 : Learning Feynman Diagrams using Graph Neural Networks »
Alexander Norcliffe · Harrison Mitchell · Pietro Lió -
2022 : GAUCHE: A Library for Gaussian Processes in Chemistry »
Ryan-Rhys Griffiths · Leo Klarner · Henry Moss · Aditya Ravuri · Sang Truong · Bojana Rankovic · Yuanqi Du · Arian Jamasb · Julius Schwartz · Austin Tripp · Gregory Kell · Anthony Bourached · Alex Chan · Jacob Moss · Chengzhi Guo · Alpha Lee · Philippe Schwaller · Jian Tang -
2022 : PIPS: Path Integral Stochastic Optimal Control for Path Sampling in Molecular Dynamics »
Lars Holdijk · Yuanqi Du · Ferry Hooft · Priyank Jaini · Berend Ensing · Max Welling -
2022 : A physics-informed search for metric solutions to Ricci flow, their embeddings, and visualisation »
Aarjav Jain · Challenger Mishra · Pietro Lió -
2022 : Equivariant 3D-Conditional Diffusion Models for Molecular Linker Design »
Ilia Igashov · Hannes Stärk · Clément Vignac · Victor Garcia Satorras · Pascal Frossard · Max Welling · Michael Bronstein · Bruno Correia -
2022 : Improving Classification and Data Imputation for Single-Cell Transcriptomics with Graph Neural Networks »
Han-Bo Li · Ramon Viñas Torné · Pietro Lió -
2022 : Xtal2DoS: Attention-based Crystal to Sequence Learning for Density of States Prediction »
Junwen Bai · Yuanqi Du · Yingheng Wang · Shufeng Kong · John Gregoire · Carla Gomes -
2022 : Program Synthesis for Integer Sequence Generation »
Natasha Butt · Auke Wiggers · Taco Cohen · Max Welling -
2022 : ChemSpacE: Interpretable and Interactive Chemical Space Exploration »
Yuanqi Du · Xian Liu · Nilay Shah · Shengchao Liu · Jieyu Zhang · Bolei Zhou -
2022 : A Federated Learning benchmark for Drug-Target Interaction »
Filip Svoboda · Gianluca Mittone · Nicholas Lane · Pietro Lió -
2022 : Improving Molecular Pretraining with Complementary Featurizations »
Yanqiao Zhu · Dingshuo Chen · Yuanqi Du · Yingze Wang · Qiang Liu · Shu Wu -
2022 : Benchmarking Graph Neural Network-based Imputation Methods on Single-Cell Transcriptomics Data »
Han-Bo Li · Ramon Viñas Torné · Pietro Lió -
2022 : Sheaf Attention Networks »
Federico Barbero · Cristian Bodnar · Haitz Sáez de Ocáriz Borde · Pietro Lió -
2022 : Human Interventions in Concept Graph Networks »
Lucie Charlotte Magister · Pietro Barbiero · Dmitry Kazhdan · Federico Siciliano · Gabriele Ciravegna · Fabrizio Silvestri · Mateja Jamnik · Pietro Lió -
2023 Poster: Molecule Joint Auto-Encoding: Self-Supervised Learning of 2D and 3D Trajectories »
weitao Du · Jiujiu Chen · Xuecang Zhang · Zhi-Ming Ma · Shengchao Liu -
2023 Poster: GAUCHE: A Library for Gaussian Processes in Chemistry »
Ryan-Rhys Griffiths · Leo Klarner · Henry Moss · Aditya Ravuri · Sang Truong · Yuanqi Du · Samuel Stanton · Gary Tom · Bojana Rankovic · Arian Jamasb · Aryan Deshwal · Julius Schwartz · Austin Tripp · Gregory Kell · Simon Frieder · Anthony Bourached · Alex Chan · Jacob Moss · Chengzhi Guo · Johannes Peter Dürholt · Saudamini Chaurasia · Ji Won Park · Felix Strieth-Kalthoff · Alpha Lee · Bingqing Cheng · Alan Aspuru-Guzik · Philippe Schwaller · Jian Tang -
2023 Poster: Graph Denoising Diffusion for Inverse Protein Folding »
Kai Yi · Bingxin Zhou · Yiqing Shen · Pietro Lió · Yuguang Wang -
2023 Poster: Wasserstein Quantum Monte Carlo: A Novel Approach for Solving the Quantum Many-Body Schrödinger Equation »
Kirill Neklyudov · Jannes Nys · Luca Thiede · Juan Carrasquilla · Qiang Liu · Max Welling · Alireza Makhzani -
2023 Poster: Unsupervised Learning for Solving the Travelling Salesman Problem »
Yimeng Min · Yiwei Bai · Carla Gomes -
2023 Poster: A new perspective on building efficient and expressive 3D equivariant graph neural networks »
weitao Du · Yuanqi Du · Limei Wang · Dieqiao Feng · Guifeng Wang · Shuiwang Ji · Carla Gomes · Zhi-Ming Ma -
2023 Poster: Rotating Features for Object Discovery »
Sindy Löwe · Phillip Lippe · Francesco Locatello · Max Welling -
2023 Poster: Lie Point Symmetry and Physics-Informed Networks »
Tara Akhound-Sadegh · Laurence Perreault-Levasseur · Johannes Brandstetter · Max Welling · Siamak Ravanbakhsh -
2023 Poster: Interpretable Graph Networks Formulate Universal Algebra Conjectures »
Francesco Giannini · Stefano Fioravanti · Oguzhan Keskin · Alisia Lupidi · Lucie Charlotte Magister · Pietro Lió · Pietro Barbiero -
2023 Poster: Sheaf Hypergraph Networks »
Iulia Duta · Giulia Cassarà · Fabrizio Silvestri · Pietro Lió -
2023 Poster: Flow Factorized Representation Learning »
Yue Song · T. Anderson Keller · Nicu Sebe · Max Welling -
2023 Poster: Stochastic Optimal Control for Collective Variable Free Sampling of Molecular Transition Paths »
Lars Holdijk · Yuanqi Du · Ferry Hooft · Priyank Jaini · Berend Ensing · Max Welling -
2023 Poster: Symmetry-Informed Geometric Representation for Molecules, Proteins, and Crystalline Materials »
Shengchao Liu · weitao Du · Yanjing Li · Zhuoxinran Li · Zhiling Zheng · Chenru Duan · Zhi-Ming Ma · Omar Yaghi · Animashree Anandkumar · Christian Borgs · Jennifer Chayes · Hongyu Guo · Jian Tang -
2023 Poster: M$^2$Hub: Unlocking the Potential of Machine Learning for Materials Discovery »
Yuanqi Du · Yingheng Wang · Yining Huang · Jianan Canal Li · Yanqiao Zhu · Tian Xie · Chenru Duan · John Gregoire · Carla Gomes -
2023 Oral: Rotating Features for Object Discovery »
Sindy Löwe · Phillip Lippe · Francesco Locatello · Max Welling -
2023 Workshop: AI for Science: from Theory to Practice »
Yuanqi Du · Max Welling · Yoshua Bengio · Marinka Zitnik · Carla Gomes · Jure Leskovec · Maria Brbic · Wenhao Gao · Kexin Huang · Ziming Liu · Rocío Mercado · Miles Cranmer · Shengchao Liu · Lijing Wang -
2022 Spotlight: Alleviating Adversarial Attacks on Variational Autoencoders with MCMC »
Anna Kuzina · Max Welling · Jakub Tomczak -
2022 : Invited Speaker »
Max Welling -
2022 : Sheaf Attention Networks »
Federico Barbero · Cristian Bodnar · Haitz Sáez de Ocáriz Borde · Pietro Lió -
2022 : Invited Talk #4, The Fifth Paradigm of Scientific Discovery, Max Welling »
Max Welling -
2022 : Dynamic outcomes-based clustering of disease progression in mechanically ventilated patients »
Emma Rocheteau · Ioana Bica · Pietro Lió · Ari Ercole -
2022 Workshop: AI for Science: Progress and Promises »
Yi Ding · Yuanqi Du · Tianfan Fu · Hanchen Wang · Anima Anandkumar · Yoshua Bengio · Anthony Gitter · Carla Gomes · Aviv Regev · Max Welling · Marinka Zitnik -
2022 Poster: Concept Embedding Models: Beyond the Accuracy-Explainability Trade-Off »
Mateo Espinosa Zarlenga · Pietro Barbiero · Gabriele Ciravegna · Giuseppe Marra · Francesco Giannini · Michelangelo Diligenti · Zohreh Shams · Frederic Precioso · Stefano Melacci · Adrian Weller · Pietro Lió · Mateja Jamnik -
2022 Poster: Batch Bayesian Optimization on Permutations using the Acquisition Weighted Kernel »
Changyong Oh · Roberto Bondesan · Efstratios Gavves · Max Welling -
2022 Poster: Alleviating Adversarial Attacks on Variational Autoencoders with MCMC »
Anna Kuzina · Max Welling · Jakub Tomczak -
2022 Poster: Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs »
Cristian Bodnar · Francesco Di Giovanni · Benjamin Chamberlain · Pietro Lió · Michael Bronstein -
2022 Poster: Left Heavy Tails and the Effectiveness of the Policy and Value Networks in DNN-based best-first search for Sokoban Planning »
Dieqiao Feng · Carla Gomes · Bart Selman -
2022 Poster: Graphein - a Python Library for Geometric Deep Learning and Network Analysis on Biomolecular Structures and Interaction Networks »
Arian Jamasb · Ramon Viñas Torné · Eric Ma · Yuanqi Du · Charles Harris · Kexin Huang · Dominic Hall · Pietro Lió · Tom Blundell -
2022 Poster: Composite Feature Selection Using Deep Ensembles »
Fergus Imrie · Alexander Norcliffe · Pietro Lió · Mihaela van der Schaar -
2022 Poster: On the symmetries of the synchronization problem in Cryo-EM: Multi-Frequency Vector Diffusion Maps on the Projective Plane »
Gabriele Cesa · Arash Behboodi · Taco Cohen · Max Welling -
2022 Poster: SizeShiftReg: a Regularization Method for Improving Size-Generalization in Graph Neural Networks »
Davide Buffelli · Pietro Lió · Fabio Vandin -
2021 : A GNN-RNN Approach for Harnessing Geospatial and Temporal Information: Application to Crop Yield Prediction »
Joshua Fan · Junwen Bai · Zhiyun Li · Ariel Ortiz-Bobea · Carla Gomes -
2021 : Resolving Super Fine-Resolution SIF via Coarsely-Supervised U-Net Regression »
Joshua Fan · Di Chen · Jiaming Wen · Ying Sun · Carla Gomes -
2021 : Particle Dynamics for Learning EBMs »
Kirill Neklyudov · Priyank Jaini · Max Welling -
2021 : Neural ODE Processes: A Short Summary »
Alexander Norcliffe · Cristian Bodnar · Ben Day · Jacob Moss · Pietro Lió -
2021 : On Second Order Behaviour in Augmented Neural ODEs: A Short Summary »
Alexander Norcliffe · Cristian Bodnar · Ben Day · Nikola Simidjievski · Pietro Lió -
2021 : General Discussion 1 - What is out of distribution (OOD) generalization and why is it important? with Yoshua Bengio, Leyla Isik, Max Welling »
Yoshua Bengio · Leyla Isik · Max Welling · Joshua T Vogelstein · Weiwei Yang -
2021 Workshop: Bayesian Deep Learning »
Yarin Gal · Yingzhen Li · Sebastian Farquhar · Christos Louizos · Eric Nalisnick · Andrew Gordon Wilson · Zoubin Ghahramani · Kevin Murphy · Max Welling -
2021 : Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders »
T. Anderson Keller · Qinghe Gao · Max Welling -
2021 : Live Panel »
Max Welling · Bharath Ramsundar · Irina Rish · Karianne J Bergen · Pushmeet Kohli -
2021 : Structure-aware generation of drug-like molecules »
Pavol Drotar · Arian Jamasb · Ben Day · Catalina Cangea · Pietro Lió -
2021 : Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders »
T. Anderson Keller · Qinghe Gao · Max Welling -
2021 : Session 1 | Invited talk: Max Welling, "Accelerating simulations of nature, both classical and quantum, with equivariant deep learning" »
Max Welling · Atilim Gunes Baydin -
2021 Workshop: AI for Science: Mind the Gaps »
Payal Chandak · Yuanqi Du · Tianfan Fu · Wenhao Gao · Kexin Huang · Shengchao Liu · Ziming Liu · Gabriel Spadon · Max Tegmark · Hanchen Wang · Adrian Weller · Max Welling · Marinka Zitnik -
2021 Poster: Towards Deeper Deep Reinforcement Learning with Spectral Normalization »
Nils Bjorck · Carla Gomes · Kilian Weinberger -
2021 Poster: Argmax Flows and Multinomial Diffusion: Learning Categorical Distributions »
Emiel Hoogeboom · Didrik Nielsen · Priyank Jaini · Patrick Forré · Max Welling -
2021 Poster: Contrastively Disentangled Sequential Variational Autoencoder »
Junwen Bai · Weiran Wang · Carla Gomes -
2021 Poster: Topographic VAEs learn Equivariant Capsules »
T. Anderson Keller · Max Welling -
2021 : Unsupervised Indoor Wi-Fi Positioning »
Farhad G. Zanjani · Ilia Karmanov · Hanno Ackermann · Daniel Dijkman · Max Welling · Ishaque Kadampot · Simone Merlin · Steve Shellhammer · Rui Liang · Brian Buesker · Harshit Joshi · Vamsi Vegunta · Raamkumar Balamurthi · Bibhu Mohanty · Joseph Soriaga · Ron Tindall · Pat Lawlor -
2021 Poster: Learning Equivariant Energy Based Models with Equivariant Stein Variational Gradient Descent »
Priyank Jaini · Lars Holdijk · Max Welling -
2021 Poster: E(n) Equivariant Normalizing Flows »
Victor Garcia Satorras · Emiel Hoogeboom · Fabian Fuchs · Ingmar Posner · Max Welling -
2021 Poster: Modality-Agnostic Topology Aware Localization »
Farhad Ghazvinian Zanjani · Ilia Karmanov · Hanno Ackermann · Daniel Dijkman · Simone Merlin · Max Welling · Fatih Porikli -
2021 Oral: E(n) Equivariant Normalizing Flows »
Victor Garcia Satorras · Emiel Hoogeboom · Fabian Fuchs · Ingmar Posner · Max Welling -
2020 : Invited Talk: Max Welling - The LIAR (Learning with Interval Arithmetic Regularization) is Dead »
Max Welling -
2020 Poster: Natural Graph Networks »
Pim de Haan · Taco Cohen · Max Welling -
2020 Poster: Constraining Variational Inference with Geometric Jensen-Shannon Divergence »
Jacob Deasy · Nikola Simidjievski · Pietro Lió -
2020 Poster: SE(3)-Transformers: 3D Roto-Translation Equivariant Attention Networks »
Fabian Fuchs · Daniel E Worrall · Volker Fischer · Max Welling -
2020 Poster: On Second Order Behaviour in Augmented Neural ODEs »
Alexander Norcliffe · Cristian Bodnar · Ben Day · Nikola Simidjievski · Pietro Lió -
2020 Poster: SurVAE Flows: Surjections to Bridge the Gap between VAEs and Flows »
Didrik Nielsen · Priyank Jaini · Emiel Hoogeboom · Ole Winther · Max Welling -
2020 Oral: SurVAE Flows: Surjections to Bridge the Gap between VAEs and Flows »
Didrik Nielsen · Priyank Jaini · Emiel Hoogeboom · Ole Winther · Max Welling -
2020 Poster: The Convolution Exponential and Generalized Sylvester Flows »
Emiel Hoogeboom · Victor Garcia Satorras · Jakub Tomczak · Max Welling -
2020 Poster: Bayesian Bits: Unifying Quantization and Pruning »
Mart van Baalen · Christos Louizos · Markus Nagel · Rana Ali Amjad · Ying Wang · Tijmen Blankevoort · Max Welling -
2020 Poster: Experimental design for MRI by greedy policy search »
Tim Bakker · Herke van Hoof · Max Welling -
2020 Spotlight: Experimental design for MRI by greedy policy search »
Tim Bakker · Herke van Hoof · Max Welling -
2020 Poster: A Novel Automated Curriculum Strategy to Solve Hard Sokoban Planning Instances »
Dieqiao Feng · Carla Gomes · Bart Selman -
2020 Poster: MDP Homomorphic Networks: Group Symmetries in Reinforcement Learning »
Elise van der Pol · Daniel E Worrall · Herke van Hoof · Frans Oliehoek · Max Welling -
2019 : AI and Sustainable Development »
Fei Fang · Carla Gomes · Miguel Luengo-Oroz · Thomas Dietterich · Julien Cornebise -
2019 : Carla Gomes (Cornell) »
Carla Gomes -
2019 : Climate Change: A Grand Challenge for ML »
Yoshua Bengio · Carla Gomes · Andrew Ng · Jeff Dean · Lester Mackey -
2019 : Computational Sustainability: Computing for a Better World and a Sustainable Future »
Carla Gomes -
2019 : TBD »
Max Welling -
2019 : Keynote - ML »
Max Welling -
2019 Workshop: Bayesian Deep Learning »
Yarin Gal · José Miguel Hernández-Lobato · Christos Louizos · Eric Nalisnick · Zoubin Ghahramani · Kevin Murphy · Max Welling -
2019 Poster: Invert to Learn to Invert »
Patrick Putzky · Max Welling -
2019 Poster: Deep Scale-spaces: Equivariance Over Scale »
Daniel Worrall · Max Welling -
2019 Poster: Integer Discrete Flows and Lossless Compression »
Emiel Hoogeboom · Jorn Peters · Rianne van den Berg · Max Welling -
2019 Poster: The Functional Neural Process »
Christos Louizos · Xiahan Shi · Klamer Schutte · Max Welling -
2019 Poster: Combining Generative and Discriminative Models for Hybrid Inference »
Victor Garcia Satorras · Zeynep Akata · Max Welling -
2019 Spotlight: Combining Generative and Discriminative Models for Hybrid Inference »
Victor Garcia Satorras · Max Welling · Zeynep Akata -
2019 Poster: Combinatorial Bayesian Optimization using the Graph Cartesian Product »
Changyong Oh · Jakub Tomczak · Stratis Gavves · Max Welling -
2018 : Making the Case for using more Inductive Bias in Deep Learning »
Max Welling -
2018 : Panel disucssion »
Max Welling · Tim Genewein · Edwin Park · Song Han -
2018 : Efficient Computation of Deep Convolutional Neural Networks: A Quantization Perspective »
Max Welling -
2018 : Prof. Max Welling »
Max Welling -
2018 Workshop: Bayesian Deep Learning »
Yarin Gal · José Miguel Hernández-Lobato · Christos Louizos · Andrew Wilson · Zoubin Ghahramani · Kevin Murphy · Max Welling -
2018 Workshop: NIPS 2018 workshop on Compact Deep Neural Networks with industrial applications »
Lixin Fan · Zhouchen Lin · Max Welling · Yurong Chen · Werner Bailer -
2018 Poster: Understanding Batch Normalization »
Johan Bjorck · Carla Gomes · Bart Selman · Kilian Weinberger -
2018 Poster: Graphical Generative Adversarial Networks »
Chongxuan LI · Max Welling · Jun Zhu · Bo Zhang -
2018 Poster: 3D Steerable CNNs: Learning Rotationally Equivariant Features in Volumetric Data »
Maurice Weiler · Wouter Boomsma · Mario Geiger · Max Welling · Taco Cohen -
2017 : Panel Session »
Neil Lawrence · Finale Doshi-Velez · Zoubin Ghahramani · Yann LeCun · Max Welling · Yee Whye Teh · Ole Winther -
2017 : Deep Bayes for Distributed Learning, Uncertainty Quantification and Compression »
Max Welling -
2017 Workshop: Bayesian Deep Learning »
Yarin Gal · José Miguel Hernández-Lobato · Christos Louizos · Andrew Wilson · Andrew Wilson · Diederik Kingma · Zoubin Ghahramani · Kevin Murphy · Max Welling -
2017 : Panel session »
Iain Murray · Max Welling · Juan Carrasquilla · Anatole von Lilienfeld · Gilles Louppe · Kyle Cranmer -
2017 : Panel: On the Foundations and Future of Approximate Inference »
David Blei · Zoubin Ghahramani · Katherine Heller · Tim Salimans · Max Welling · Matthew D. Hoffman -
2017 : Invited talk 1: Deep recurrent inverse modeling for radio astronomy and fast MRI imaging »
Max Welling -
2017 Workshop: Advances in Approximate Bayesian Inference »
Francisco Ruiz · Stephan Mandt · Cheng Zhang · James McInerney · James McInerney · Dustin Tran · Dustin Tran · David Blei · Max Welling · Tamara Broderick · Michalis Titsias -
2017 Poster: Causal Effect Inference with Deep Latent-Variable Models »
Christos Louizos · Uri Shalit · Joris Mooij · David Sontag · Richard Zemel · Max Welling -
2017 Poster: Bayesian Compression for Deep Learning »
Christos Louizos · Karen Ullrich · Max Welling -
2016 : Max Welling : Making Deep Learning Efficient Through Sparsification »
Max Welling -
2016 Workshop: Bayesian Deep Learning »
Yarin Gal · Christos Louizos · Zoubin Ghahramani · Kevin Murphy · Max Welling -
2016 Poster: Solving Marginal MAP Problems with NP Oracles and Parity Constraints »
Yexiang Xue · zhiyuan li · Stefano Ermon · Carla Gomes · Bart Selman -
2016 Poster: Improving Variational Autoencoders with Inverse Autoregressive Flow »
Diederik Kingma · Tim Salimans · Rafal Jozefowicz · Peter Chen · Xi Chen · Ilya Sutskever · Max Welling -
2015 Workshop: Scalable Monte Carlo Methods for Bayesian Analysis of Big Data »
Babak Shahbaba · Yee Whye Teh · Max Welling · Arnaud Doucet · Christophe Andrieu · Sebastian J. Vollmer · Pierre Jacob -
2015 : *Max Welling* Optimization Monte Carlo »
Max Welling -
2015 Symposium: Deep Learning Symposium »
Yoshua Bengio · Marc'Aurelio Ranzato · Honglak Lee · Max Welling · Andrew Y Ng -
2015 Poster: Bayesian dark knowledge »
Anoop Korattikara Balan · Vivek Rathod · Kevin Murphy · Max Welling -
2015 Poster: Optimization Monte Carlo: Efficient and Embarrassingly Parallel Likelihood-Free Inference »
Ted Meeds · Max Welling -
2015 Poster: Variational Dropout and the Local Reparameterization Trick »
Diederik Kingma · Tim Salimans · Max Welling -
2014 Workshop: ABC in Montreal »
Max Welling · Neil D Lawrence · Richard D Wilkinson · Ted Meeds · Christian X Robert -
2014 Poster: Semi-supervised Learning with Deep Generative Models »
Diederik Kingma · Shakir Mohamed · Danilo Jimenez Rezende · Max Welling -
2014 Demonstration: Machine Learning in the Browser »
Ted Meeds · Remco Hendriks · Said Al Faraby · Magiel Bruntink · Max Welling -
2014 Spotlight: Semi-supervised Learning with Deep Generative Models »
Diederik Kingma · Shakir Mohamed · Danilo Jimenez Rezende · Max Welling -
2013 Workshop: Machine Learning for Sustainability »
Edwin Bonilla · Thomas Dietterich · Theodoros Damoulas · Andreas Krause · Daniel Sheldon · Iadine Chades · J. Zico Kolter · Bistra Dilkina · Carla Gomes · Hugo P Simao -
2013 Workshop: Probabilistic Models for Big Data »
Neil D Lawrence · Joaquin Quiñonero-Candela · Tianshi Gao · James Hensman · Zoubin Ghahramani · Max Welling · David Blei · Ralf Herbrich -
2013 Poster: Embed and Project: Discrete Sampling with Universal Hashing »
Stefano Ermon · Carla Gomes · Ashish Sabharwal · Bart Selman -
2012 Poster: Density Propagation and Improved Bounds on the Partition Function »
Stefano Ermon · Carla Gomes · Ashish Sabharwal · Bart Selman -
2012 Poster: The Time-Marginalized Coalescent Prior for Hierarchical Clustering »
Levi Boyles · Max Welling -
2011 Poster: Accelerated Adaptive Markov Chain for Partition Function Computation »
Stefano Ermon · Carla Gomes · Ashish Sabharwal · Bart Selman -
2011 Poster: Statistical Tests for Optimization Efficiency »
Levi Boyles · Anoop Korattikara · Deva Ramanan · Max Welling -
2011 Spotlight: Accelerated Adaptive Markov Chain for Partition Function Computation »
Stefano Ermon · Carla Gomes · Ashish Sabharwal · Bart Selman -
2010 Poster: On Herding and the Perceptron Cycling Theorem »
Andrew E Gelfand · Yutian Chen · Laurens van der Maaten · Max Welling -
2008 Session: Oral session 10: Nonparametric Processes, Scene Processing and Image Statistics »
Max Welling -
2008 Poster: Asynchronous Distributed Learning of Topic Models »
Arthur Asuncion · Padhraic Smyth · Max Welling -
2007 Spotlight: Collapsed Variational Inference for HDP »
Yee Whye Teh · Kenichi Kurihara · Max Welling -
2007 Spotlight: Distributed Inference for Latent Dirichlet Allocation »
David Newman · Arthur Asuncion · Padhraic Smyth · Max Welling -
2007 Poster: Infinite State Bayes-Nets for Structured Domains »
Max Welling · Ian Porteous · Evgeniy Bart -
2007 Poster: Collapsed Variational Inference for HDP »
Yee Whye Teh · Kenichi Kurihara · Max Welling -
2007 Poster: Distributed Inference for Latent Dirichlet Allocation »
David Newman · Arthur Asuncion · Padhraic Smyth · Max Welling -
2007 Spotlight: Infinite State Bayes-Nets for Structured Domains »
Max Welling · Ian Porteous · Evgeniy Bart -
2006 Poster: Structure Learning in Markov Random Fields »
Sridevi Parise · Max Welling -
2006 Poster: Accelerated Variational Dirichlet Process Mixtures »
Kenichi Kurihara · Max Welling · Nikos Vlassis -
2006 Spotlight: Accelerated Variational Dirichlet Process Mixtures »
Kenichi Kurihara · Max Welling · Nikos Vlassis -
2006 Poster: Near-Uniform Sampling of Combinatorial Spaces Using XOR Constraints »
Carla Gomes · Ashish Sabharwal · Bart Selman -
2006 Poster: A Collapsed Variational Bayesian Inference Algorithm for Latent Dirichlet Allocation »
Yee Whye Teh · David Newman · Max Welling