Timezone: »
HAPNEST: An efficient tool for generating large-scale genetics datasets from limited training data
Sophie Wharrie · Zhiyu Yang · Vishnu Raj · Remo Monti · Rahul Gupta · Ying Wang · Alicia Martin · Luke O'Connor · Samuel Kaski · Pekka Marttinen · Pier Palamara · Christoph Lippert · Andrea Ganna
Event URL: https://openreview.net/forum?id=zW6XoC-v6_D »
In this extended abstract we present a new highly efficient software tool called HAPNEST that enables machine learning practitioners to easily generate and evaluate large synthetic datasets for human genetics applications. HAPNEST enables the generation of diverse synthetic datasets from small, publicly accessible reference datasets. We demonstrate the suitability of HAPNEST-generated data for supervised tasks such as genetic risk scoring.
Author Information
Sophie Wharrie (Aalto University)
Zhiyu Yang
Vishnu Raj (Aalto University)
Remo Monti
Rahul Gupta
Ying Wang
Alicia Martin
Luke O'Connor
Samuel Kaski (Aalto University and University of Manchester)
Pekka Marttinen (Aalto University)
Pier Palamara (University of Oxford)
Christoph Lippert (Hasso Plattner Institute for Digital Engineering, Universität Potsdam)
Andrea Ganna
More from the Same Authors
-
2022 : Joint Point Process Model for Counterfactual Treatment--Outcome Trajectories Under Policy Interventions »
Çağlar Hızlı · ST John · Anne Juuti · Tuure Saarinen · Kirsi Pietiläinen · Pekka Marttinen -
2022 : Modular Flows: Differential Molecular Generation »
Yogesh Verma · Samuel Kaski · Markus Heinonen · Vikas Garg -
2022 : Targeted Causal Elicitation »
Nazaal Ibrahim · ST John · Zhigao Guo · Samuel Kaski -
2022 : More trustworthy Bayesian optimization of materials properties by adding human into the loop »
Armi Tiihonen · Louis Filstroff · Petrus Mikkola · Emma Lehto · Samuel Kaski · Milica Todorović · Patrick Rinke -
2022 : Provably expressive temporal graph networks »
Amauri Souza · Diego Mesquita · Samuel Kaski · Vikas Garg -
2022 : Modular Flows: Differential Molecular Generation »
Yogesh Verma · Samuel Kaski · Markus Heinonen · Vikas Garg -
2022 : Differentiable User Models »
Alex Hämäläinen · Mustafa Mert Çelikok · Samuel Kaski -
2022 : Panel Discussion »
Cynthia Rudin · Dan Bohus · Brenna Argall · Alison Gopnik · Igor Mordatch · Samuel Kaski -
2022 : Joint Point Process Model for Counterfactual Treatment-Outcome Trajectories Under Policy Interventions »
Çağlar Hızlı · ST John · Anne Juuti · Tuure Saarinen · Kirsi Pietiläinen · Pekka Marttinen -
2022 : Collaborative AI for assisting virtual laboratories »
Samuel Kaski -
2022 : Noise-Aware Statistical Inference with Differentially Private Synthetic Data »
Ossi Räisä · Joonas Jälkö · Antti Honkela · Samuel Kaski -
2022 Poster: Modular Flows: Differential Molecular Generation »
Yogesh Verma · Samuel Kaski · Markus Heinonen · Vikas Garg -
2022 Poster: Deconfounded Representation Similarity for Comparison of Neural Networks »
Tianyu Cui · Yogesh Kumar · Pekka Marttinen · Samuel Kaski -
2022 Poster: Provably expressive temporal graph networks »
Amauri Souza · Diego Mesquita · Samuel Kaski · Vikas Garg -
2021 Poster: De-randomizing MCMC dynamics with the diffusion Stein operator »
Zheyang Shen · Markus Heinonen · Samuel Kaski -
2021 Poster: A Critical Look at the Consistency of Causal Estimation with Deep Latent Variable Models »
Severi Rissanen · Pekka Marttinen -
2020 Poster: Beyond the Mean-Field: Structured Deep Gaussian Processes Improve the Predictive Uncertainties »
Jakob Lindinger · David Reeb · Christoph Lippert · Barbara Rakitsch -
2020 Poster: 3D Self-Supervised Methods for Medical Imaging »
Aiham Taleb · Winfried Loetzsch · Noel Danz · Julius Severin · Thomas Gaertner · Benjamin Bergner · Christoph Lippert -
2020 Poster: Rethinking pooling in graph neural networks »
Diego Mesquita · Amauri Souza · Samuel Kaski -
2019 : Poster Session I »
Shuangjia Zheng · Arnav Kapur · Umar Asif · Eyal Rozenberg · Cyprien Gilet · Oleksii Sidorov · Yogesh Kumar · Tom Van Steenkiste · William Boag · David Ouyang · Paul Jaeger · Sheng Liu · Aparna Balagopalan · Deepta Rajan · Marta Skreta · Nikhil Pattisapu · Jann Goschenhofer · Viraj Prabhu · Di Jin · Laura-Jayne Gardiner · Irene Li · sriram kumar · Qiyuan Hu · Mehul Motani · Justin Lovelace · Usman Roshan · Lucy Lu Wang · Ilya Valmianski · Hyeonwoo Lee · Sunil Mallya · Elias Chaibub Neto · Jonas Kemp · Marie Charpignon · Amber Nigam · Wei-Hung Weng · Sabri Boughorbel · Alexis Bellot · Lovedeep Gondara · Haoran Zhang · Taha Bahadori · John Zech · Rulin Shao · Edward Choi · Laleh Seyyed-Kalantari · Emily Aiken · Ioana Bica · Yiqiu Shen · Kieran Chin-Cheong · Subhrajit Roy · Ioana Baldini · So Yeon Min · Dirk Deschrijver · Pekka Marttinen · Damian Pascual Ortiz · Supriya Nagesh · Niklas Rindtorff · Andriy Mulyar · Katharina Hoebel · Martha Shaka · Pierre Machart · Leon Gatys · Nathan Ng · Matthias Hüser · Devin Taylor · Dennis Barbour · Natalia Martinez · Clara McCreery · Benjamin Eyre · Vivek Natarajan · Ren Yi · Ruibin Ma · Chirag Nagpal · Nan Du · Chufan Gao · Anup Tuladhar · Sam Shleifer · Jason Ren · Pouria Mashouri · Ming Yang Lu · Farideh Bagherzadeh-Khiabani · Olivia Choudhury · Maithra Raghu · Scott Fleming · Mika Jain · GUO YANG · Alena Harley · Stephen Pfohl · Elisabeth Rumetshofer · Alex Fedorov · Saloni Dash · Jacob Pfau · Sabina Tomkins · Colin Targonski · Michael Brudno · Xinyu Li · Yiyang Yu · Nisarg Patel -
2019 : Poster session »
Sebastian Farquhar · Erik Daxberger · Andreas Look · Matt Benatan · Ruiyi Zhang · Marton Havasi · Fredrik Gustafsson · James A Brofos · Nabeel Seedat · Micha Livne · Ivan Ustyuzhaninov · Adam Cobb · Felix D McGregor · Patrick McClure · Tim R. Davidson · Gaurush Hiranandani · Sanjeev Arora · Masha Itkina · Didrik Nielsen · William Harvey · Matias Valdenegro-Toro · Stefano Peluchetti · Riccardo Moriconi · Tianyu Cui · Vaclav Smidl · Taylan Cemgil · Jack Fitzsimons · He Zhao · · mariana vargas vieyra · Apratim Bhattacharyya · Rahul Sharma · Geoffroy Dubourg-Felonneau · Jonathan Warrell · Slava Voloshynovskiy · Mihaela Rosca · Jiaming Song · Andrew Ross · Homa Fashandi · Ruiqi Gao · Hooshmand Shokri Razaghi · Joshua Chang · Zhenzhong Xiao · Vanessa Boehm · Giorgio Giannone · Ranganath Krishnan · Joe Davison · Arsenii Ashukha · Jeremiah Liu · Sicong (Sheldon) Huang · Evgenii Nikishin · Sunho Park · Nilesh Ahuja · Mahesh Subedar · · Artyom Gadetsky · Jhosimar Arias Figueroa · Tim G. J. Rudner · Waseem Aslam · Adrián Csiszárik · John Moberg · Ali Hebbal · Kathrin Grosse · Pekka Marttinen · Bang An · Hlynur Jónsson · Samuel Kessler · Abhishek Kumar · Mikhail Figurnov · Omesh Tickoo · Steindor Saemundsson · Ari Heljakka · Dániel Varga · Niklas Heim · Simone Rossi · Max Laves · Waseem Gharbieh · Nicholas Roberts · Luis Armando Pérez Rey · Matthew Willetts · Prithvijit Chakrabarty · Sumedh Ghaisas · Carl Shneider · Wray Buntine · Kamil Adamczewski · Xavier Gitiaux · Suwen Lin · Hao Fu · Gunnar Rätsch · Aidan Gomez · Erik Bodin · Dinh Phung · Lennart Svensson · Juliano Tusi Amaral Laganá Pinto · Milad Alizadeh · Jianzhun Du · Kevin Murphy · Beatrix Benkő · Shashaank Vattikuti · Jonathan Gordon · Christopher Kanan · Sontje Ihler · Darin Graham · Michael Teng · Louis Kirsch · Tomas Pevny · Taras Holotyak -
2019 Poster: Machine Teaching of Active Sequential Learners »
Tomi Peltola · Mustafa Mert Çelikok · Pedram Daee · Samuel Kaski -
2017 Poster: Non-Stationary Spectral Kernels »
Sami Remes · Markus Heinonen · Samuel Kaski -
2017 Poster: Differentially private Bayesian learning on distributed data »
Mikko Heikkilä · Eemil Lagerspetz · Samuel Kaski · Kana Shimizu · Sasu Tarkoma · Antti Honkela -
2014 Workshop: Machine Learning in Computational Biology »
Oliver Stegle · Sara Mostafavi · Anna Goldenberg · Su-In Lee · Michael Leung · Anshul Kundaje · Mark B Gerstein · Martin Renqiang Min · Hannes Bretschneider · Francesco Paolo Casale · Loïc Schwaller · Amit G Deshwar · Benjamin A Logsdon · Yuanyang Zhang · Ali Punjani · Derek C Aguiar · Samuel Kaski -
2013 Poster: It is all in the noise: Efficient multi-task Gaussian process inference with structured residuals »
Barbara Rakitsch · Christoph Lippert · Karsten Borgwardt · Oliver Stegle -
2011 Poster: Learning sparse inverse covariance matrices in the presence of confounders »
Oliver Stegle · Christoph Lippert · Joris M Mooij · Neil D Lawrence · Karsten Borgwardt