Timezone: »
In this paper, we introduce Vehicle Claims datasets which belong to the category of Auditing data that includes Journals, Insurance claims, and Intrusion data for information systems. It consists of fraudulent insurance claims for automotive repairs. Insurance claims data are distinguishable from network intrusion datasets, for example, KDD data by the number of categoricalattributes. We tackle the problem of missing benchmark datasets for anomaly detection as the datasets are mostly confidential, and the public tabular datasets do not contain relevant and sufficient categorical attributes. Therefore, a large-sized dataset is created for this purpose and referred to as Vehicle Claims (VC) dataset. The dataset is evaluated on shallow and deep learning methods. Due to theintroduction of categorical attributes, we encounter the challenge of encoding them for the large dataset. As One Hot encoding of high cardinal dataset invokes the "curse of dimensionality", we experiment with GEL encoding and embedding layerfor representing categorical attributes. Our work compares competitive learning, reconstruction-error, density estimation and contrastive learning approaches for Label, One Hot, GEL encoding and embedding layer to handle categorical values.
Author Information
Ajay Chawda (Technische Universität Kaiserslautern)
Marius Kloft (TU Kaiserslautern)
Stefanie Grimm (Fraunhofer ITWM)
More from the Same Authors
-
2021 : Hierarchical Topic Evaluation: Statistical vs. Neural Models »
Mayank Kumar Nagda · Charu Karakkaparambil James · Sophie Burkhardt · Marius Kloft -
2023 Poster: Labeling Neural Representations with Inverse Recognition »
Kirill Bykov · Laura Kopf · Shinichi Nakajima · Marius Kloft · Marina Höhne -
2023 Poster: Zero-Shot Batch-Level Anomaly Detection »
Aodong Li · Chen Qiu · Marius Kloft · Padhraic Smyth · Maja Rudolph · Stephan Mandt -
2021 Poster: Fine-grained Generalization Analysis of Inductive Matrix Completion »
Antoine Ledent · Rodrigo Alves · Yunwen Lei · Marius Kloft -
2020 Poster: Sharper Generalization Bounds for Pairwise Learning »
Yunwen Lei · Antoine Ledent · Marius Kloft -
2019 : Poster and Coffee Break 2 »
Karol Hausman · Kefan Dong · Ken Goldberg · Lihong Li · Lin Yang · Lingxiao Wang · Lior Shani · Liwei Wang · Loren Amdahl-Culleton · Lucas Cassano · Marc Dymetman · Marc Bellemare · Marcin Tomczak · Margarita Castro · Marius Kloft · Marius-Constantin Dinu · Markus Holzleitner · Martha White · Mengdi Wang · Michael Jordan · Mihailo Jovanovic · Ming Yu · Minshuo Chen · Moonkyung Ryu · Muhammad Zaheer · Naman Agarwal · Nan Jiang · Niao He · Nikolaus Yasui · Nikos Karampatziakis · Nino Vieillard · Ofir Nachum · Olivier Pietquin · Ozan Sener · Pan Xu · Parameswaran Kamalaruban · Paul Mineiro · Paul Rolland · Philip Amortila · Pierre-Luc Bacon · Prakash Panangaden · Qi Cai · Qiang Liu · Quanquan Gu · Raihan Seraj · Richard Sutton · Rick Valenzano · Robert Dadashi · Rodrigo Toro Icarte · Roshan Shariff · Roy Fox · Ruosong Wang · Saeed Ghadimi · Samuel Sokota · Sean Sinclair · Sepp Hochreiter · Sergey Levine · Sergio Valcarcel Macua · Sham Kakade · Shangtong Zhang · Sheila McIlraith · Shie Mannor · Shimon Whiteson · Shuai Li · Shuang Qiu · Wai Lok Li · Siddhartha Banerjee · Sitao Luan · Tamer Basar · Thinh Doan · Tianhe Yu · Tianyi Liu · Tom Zahavy · Toryn Klassen · Tuo Zhao · Vicenç Gómez · Vincent Liu · Volkan Cevher · Wesley Suttle · Xiao-Wen Chang · Xiaohan Wei · Xiaotong Liu · Xingguo Li · Xinyi Chen · Xingyou Song · Yao Liu · YiDing Jiang · Yihao Feng · Yilun Du · Yinlam Chow · Yinyu Ye · Yishay Mansour · · Yonathan Efroni · Yongxin Chen · Yuanhao Wang · Bo Dai · Chen-Yu Wei · Harsh Shrivastava · Hongyang Zhang · Qinqing Zheng · SIDDHARTHA SATPATHI · Xueqing Liu · Andreu Vall -
2019 Poster: Effective End-to-end Unsupervised Outlier Detection via Inlier Priority of Discriminative Network »
Siqi Wang · Yijie Zeng · Xinwang Liu · En Zhu · Jianping Yin · Chuanfu Xu · Marius Kloft -
2017 : Marius Kloft (Kaiserslautern) on Generalization Error Bounds for Extreme Multi-class Classification »
Marius Kloft -
2017 Workshop: Extreme Classification: Multi-class & Multi-label Learning in Extremely Large Label Spaces »
Manik Varma · Marius Kloft · Krzysztof Dembczynski -
2015 Poster: Multi-class SVMs: From Tighter Data-Dependent Generalization Bounds to Novel Algorithms »
Yunwen Lei · Urun Dogan · Alexander Binder · Marius Kloft -
2014 Workshop: Second Workshop on Transfer and Multi-Task Learning: Theory meets Practice »
Urun Dogan · Tatiana Tommasi · Yoshua Bengio · Francesco Orabona · Marius Kloft · Andres Munoz · Gunnar Rätsch · Hal Daumé III · Mehryar Mohri · Xuezhi Wang · Daniel Hernández-lobato · Song Liu · Thomas Unterthiner · Pascal Germain · Vinay P Namboodiri · Michael Goetz · Christopher Berlind · Sigurd Spieckermann · Marta Soare · Yujia Li · Vitaly Kuznetsov · Wenzhao Lian · Daniele Calandriello · Emilie Morvant -
2013 Workshop: New Directions in Transfer and Multi-Task: Learning Across Domains and Tasks »
Urun Dogan · Marius Kloft · Tatiana Tommasi · Francesco Orabona · Massimiliano Pontil · Sinno Jialin Pan · Shai Ben-David · Arthur Gretton · Fei Sha · Marco Signoretto · Rajhans Samdani · Yun-Qian Miao · Mohammad Gheshlaghi azar · Ruth Urner · Christoph Lampert · Jonathan How -
2013 Workshop: MLINI-13: Machine Learning and Interpretation in Neuroimaging (Day 2) »
Georg Langs · Brian Murphy · Kai-min K Chang · Paolo Avesani · James Haxby · Nikolaus Kriegeskorte · Susan Whitfield-Gabrieli · Irina Rish · Guillermo Cecchi · Raif Rustamov · Marius Kloft · Jonathan Young · Sina Ghiassian · Michael Coen -
2013 Workshop: MLINI-13: Machine Learning and Interpretation in Neuroimaging (Day 1) »
Georg Langs · Brian Murphy · Kai-min K Chang · Paolo Avesani · James Haxby · Nikolaus Kriegeskorte · Susan Whitfield-Gabrieli · Irina Rish · Guillermo Cecchi · Raif Rustamov · Marius Kloft · Jonathan Young · Sina Ghiassian · Michael Coen -
2013 Poster: Learning Kernels Using Local Rademacher Complexity »
Corinna Cortes · Marius Kloft · Mehryar Mohri -
2013 Spotlight: Learning Kernels Using Local Rademacher Complexity »
Corinna Cortes · Marius Kloft · Mehryar Mohri -
2011 Poster: The Local Rademacher Complexity of Lp-Norm Multiple Kernel Learning »
Marius Kloft · Gilles Blanchard -
2010 Workshop: New Directions in Multiple Kernel Learning »
Marius Kloft · Ulrich Rueckert · Cheng Soon Ong · Alain Rakotomamonjy · Soeren Sonnenburg · Francis Bach -
2009 Poster: Efficient and Accurate Lp-Norm Multiple Kernel Learning »
Marius Kloft · Ulf Brefeld · Soeren Sonnenburg · Pavel Laskov · Klaus-Robert Müller · Alexander Zien