Timezone: »
Recent transformer-based models for learning table representation have reported state-of-the-art results for different tasks such as table understanding, question answering and semantic parsing. The various proposed models use different architectures, specifically different attention mechanisms. In this paper, we analyze and compare the attention mechanisms used by two different tabular language models. By visualizing the attention maps of the models, we shed a light on the different patterns that the models exhibit. With our analysis on the aggregate attention over two tabular datasets, we provide insights which might help towards building more efficient models tailored for table representation learning.
Author Information
Aneta Koleva (Ludwig Maximilian University of Munich, Siemens AG)
Martin Ringsquandl (Siemens Corporate Research)
Volker Tresp (Siemens AG)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 : Analysis of the Attention in Tabular Language Models »
Fri. Dec 2nd 03:30 -- 03:45 PM Room
More from the Same Authors
-
2021 : Towards Data-Free Domain Generalization »
Ahmed Frikha · Haokun Chen · Denis Krompaß · Thomas Runkler · Volker Tresp -
2022 : A Simple But Powerful Graph Encoder for Temporal Knowledge Graph Completion »
Zifeng Ding · Yunpu Ma · Bailan He · Zhen Han · Volker Tresp -
2022 : Active Learning with Table Language Models »
Martin Ringsquandl · Aneta Koleva -
2019 : Poster Session »
Rishav Chourasia · Yichong Xu · Corinna Cortes · Chien-Yi Chang · Yoshihiro Nagano · So Yeon Min · Benedikt Boecking · Phi Vu Tran · Kamyar Ghasemipour · Qianggang Ding · Shouvik Mani · Vikram Voleti · Rasool Fakoor · Miao Xu · Kenneth Marino · Lisa Lee · Volker Tresp · Jean-Francois Kagy · Marvin Zhang · Barnabas Poczos · Dinesh Khandelwal · Adrien Bardes · Evan Shelhamer · Jiacheng Zhu · Ziming Li · Xiaoyan Li · Dmitrii Krasheninnikov · Ruohan Wang · Mayoore Jaiswal · Emad Barsoum · Suvansh Sanjeev · Theeraphol Wattanavekin · Qizhe Xie · Sifan Wu · Yuki Yoshida · David Kanaa · Sina Khoshfetrat Pakazad · Mehdi Maasoumy -
2014 Poster: Reducing the Rank in Relational Factorization Models by Including Observable Patterns »
Maximilian Nickel · Xueyan Jiang · Volker Tresp -
2014 Spotlight: Reducing the Rank in Relational Factorization Models by Including Observable Patterns »
Maximilian Nickel · Xueyan Jiang · Volker Tresp -
2006 Poster: Gaussian Process Models for Discriminative Link Prediction »
Kai Yu · Wei Chu · Shipeng Yu · Volker Tresp · Zhao Xu