Timezone: »
A Multi-Token Coordinate Descent Method for Vertical Federated Learning
Pedro Valdeira · Yuejie Chi · Claudia Soares · Joao Xavier
Event URL: https://openreview.net/forum?id=z5ZmWVh0HCh »
Communication efficiency is a major challenge in federated learning. In client-server schemes, the server constitutes a bottleneck, and while decentralized setups spread communications, they do not reduce them. We propose a communication efficient semi-decentralized federated learning algorithm for feature-distributed data. Our multi-token method can be seen as a parallel Markov chain (block) coordinate descent algorithm. In this work, we formalize the multi-token semi-decentralized scheme, which subsumes the client-server and decentralized setups, and design a feature-distributed learning algorithm for this setup. Numerical results show the improved communication efficiency of our algorithm.
Author Information
Pedro Valdeira (Carnegie Mellon University)
Yuejie Chi (Carnegie Mellon University)
Claudia Soares (NOVA School of Science and Technology)
Joao Xavier (Instituto Superior Tecnico)
More from the Same Authors
-
2021 Spotlight: Breaking the Sample Complexity Barrier to Regret-Optimal Model-Free Reinforcement Learning »
Gen Li · Laixi Shi · Yuxin Chen · Yuantao Gu · Yuejie Chi -
2021 : DESTRESS: Computation-Optimal and Communication-Efficient Decentralized Nonconvex Finite-Sum Optimization »
Boyue Li · Zhize Li · Yuejie Chi -
2021 : DESTRESS: Computation-Optimal and Communication-Efficient Decentralized Nonconvex Finite-Sum Optimization »
Boyue Li · Zhize Li · Yuejie Chi -
2021 : COCO Denoiser: Using Co-Coercivity for Variance Reduction in Stochastic Convex Optimization »
Manuel Madeira · Renato Negrinho · Joao Xavier · Pedro Aguiar -
2021 : Policy Mirror Descent for Regularized RL: A Generalized Framework with Linear Convergence »
Wenhao Zhan · Shicong Cen · Baihe Huang · Yuxin Chen · Jason Lee · Yuejie Chi -
2021 : Policy Mirror Descent for Regularized RL: A Generalized Framework with Linear Convergence »
Wenhao Zhan · Shicong Cen · Baihe Huang · Yuxin Chen · Jason Lee · Yuejie Chi -
2022 Poster: BEER: Fast $O(1/T)$ Rate for Decentralized Nonconvex Optimization with Communication Compression »
Haoyu Zhao · Boyue Li · Zhize Li · Peter Richtarik · Yuejie Chi -
2022 Poster: Minimax-Optimal Multi-Agent RL in Markov Games With a Generative Model »
Gen Li · Yuejie Chi · Yuting Wei · Yuxin Chen -
2022 Poster: SoteriaFL: A Unified Framework for Private Federated Learning with Communication Compression »
Zhize Li · Haoyu Zhao · Boyue Li · Yuejie Chi -
2021 Poster: Fast Policy Extragradient Methods for Competitive Games with Entropy Regularization »
Shicong Cen · Yuting Wei · Yuejie Chi -
2021 Poster: Breaking the Sample Complexity Barrier to Regret-Optimal Model-Free Reinforcement Learning »
Gen Li · Laixi Shi · Yuxin Chen · Yuantao Gu · Yuejie Chi -
2021 Poster: Sample-Efficient Reinforcement Learning Is Feasible for Linearly Realizable MDPs with Limited Revisiting »
Gen Li · Yuxin Chen · Yuejie Chi · Yuantao Gu · Yuting Wei -
2020 Poster: Breaking the Sample Size Barrier in Model-Based Reinforcement Learning with a Generative Model »
Gen Li · Yuting Wei · Yuejie Chi · Yuantao Gu · Yuxin Chen -
2020 Poster: Sample Complexity of Asynchronous Q-Learning: Sharper Analysis and Variance Reduction »
Gen Li · Yuting Wei · Yuejie Chi · Yuantao Gu · Yuxin Chen