Timezone: »
Effective data-driven PDE forecasting methods often rely on fixed spatial and / or temporal discretizations. This raises limitations in real-world applications like weather prediction where flexible extrapolation at arbitrary spatiotemporal locations is required. We address this problem by introducing a new data-driven approach, DINo, that models a PDE's flow with continuous-time dynamics of spatially continuous functions. This is achieved by embedding spatial observations independently of their discretization via Implicit Neural Representations in a small latent space temporally driven by a learned ODE. This separate and flexible treatment of time and space makes DINo the first data-driven model to combine the following advantages. It extrapolates at arbitrary spatial and temporal locations; it can learn from sparse irregular grids or manifolds; at test time, it generalizes to new grids or resolutions. DINo outperforms alternative neural PDE forecasters in a variety of challenging generalization scenarios on representative PDE systems.
Author Information
Yuan Yin (Sorbonne Université, ISIR)
Matthieu Kirchmeyer (Sorbonne Université & Criteo)
Jean-Yves Franceschi (Criteo AI Lab)
Alain Rakotomamonjy (Université de Rouen Normandie Criteo AI Lab)
Patrick Gallinari (Sorbonne Universite, Criteo AI Lab)
More from the Same Authors
-
2022 : Deep Learning for Model Correction in Cardiac Electrophysiological Imaging »
Victoriya Kashtanova · Patrick Gallinari · Maxime Sermesant -
2022 Poster: Benchopt: Reproducible, efficient and collaborative optimization benchmarks »
Thomas Moreau · Mathurin Massias · Alexandre Gramfort · Pierre Ablin · Pierre-Antoine Bannier · Benjamin Charlier · Mathieu Dagréou · Tom Dupre la Tour · Ghislain DURIF · Cassio F. Dantas · Quentin Klopfenstein · Johan Larsson · En Lai · Tanguy Lefort · Benoît Malézieux · Badr MOUFAD · Binh T. Nguyen · Alain Rakotomamonjy · Zaccharie Ramzi · Joseph Salmon · Samuel Vaiter -
2022 Poster: Diverse Weight Averaging for Out-of-Distribution Generalization »
Alexandre Rame · Matthieu Kirchmeyer · Thibaud Rahier · Alain Rakotomamonjy · Patrick Gallinari · Matthieu Cord -
2022 Poster: AirfRANS: High Fidelity Computational Fluid Dynamics Dataset for Approximating Reynolds-Averaged Navier–Stokes Solutions »
Florent Bonnet · Jocelyn Mazari · Paola Cinnella · Patrick Gallinari -
2021 Poster: LEADS: Learning Dynamical Systems that Generalize Across Environments »
Yuan Yin · Ibrahim Ayed · Emmanuel de Bézenac · Nicolas Baskiotis · Patrick Gallinari -
2021 Poster: Photonic Differential Privacy with Direct Feedback Alignment »
Ruben Ohana · Hamlet Medina · Julien Launay · Alessandro Cappelli · Iacopo Poli · Liva Ralaivola · Alain Rakotomamonjy -
2020 Poster: Normalizing Kalman Filters for Multivariate Time Series Analysis »
Emmanuel de Bézenac · Syama Sundar Rangapuram · Konstantinos Benidis · Michael Bohlke-Schneider · Richard Kurle · Lorenzo Stella · Hilaf Hasson · Patrick Gallinari · Tim Januschowski -
2019 Poster: Screening Sinkhorn Algorithm for Regularized Optimal Transport »
Mokhtar Z. Alaya · Maxime Berar · Gilles Gasso · Alain Rakotomamonjy -
2019 Poster: Unsupervised Scalable Representation Learning for Multivariate Time Series »
Jean-Yves Franceschi · Aymeric Dieuleveut · Martin Jaggi -
2019 Poster: Singleshot : a scalable Tucker tensor decomposition »
Abraham Traore · Maxime Berar · Alain Rakotomamonjy -
2017 Poster: Joint distribution optimal transportation for domain adaptation »
Nicolas Courty · Rémi Flamary · Amaury Habrard · Alain Rakotomamonjy -
2013 Poster: Robust Bloom Filters for Large MultiLabel Classification Tasks »
Moustapha M Cisse · Nicolas Usunier · Thierry Artières · Patrick Gallinari -
2012 Poster: Multiple Operator-valued Kernel Learning »
Hachem Kadri · Alain Rakotomamonjy · Francis Bach · philippe preux -
2012 Poster: On the (Non-)existence of Convex, Calibrated Surrogate Losses for Ranking »
Clément Calauzènes · Nicolas Usunier · Patrick Gallinari -
2012 Oral: On the (Non-)existence of Convex, Calibrated Surrogate Losses for Ranking »
Clément Calauzènes · Nicolas Usunier · Patrick Gallinari -
2010 Workshop: New Directions in Multiple Kernel Learning »
Marius Kloft · Ulrich Rueckert · Cheng Soon Ong · Alain Rakotomamonjy · Soeren Sonnenburg · Francis Bach -
2009 Workshop: Temporal Segmentation: Perspectives from Statistics, Machine Learning, and Signal Processing »
Stephane Canu · Olivier Cappé · Arthur Gretton · Zaid Harchaoui · Alain Rakotomamonjy · Jean-Philippe Vert -
2008 Poster: Suppport Vector Machines with a Reject Option »
Yves Grandvalet · Joseph Keshet · Alain Rakotomamonjy · Stephane Canu