Timezone: »
Computer-Aided Chemical Synthesis Planning (CASP) algorithms have the potential to help chemists predict how to make molecules, and decide which molecules to prioritize for synthesis and testing. Recently, several algorithms have been proposed to tackle this problem, reporting large performance improvements. In this work, we re-examine current and prior State-of-the-Art synthesis planning algorithms under controlled and identical conditions, providing a holistic view using several previously un-reported evaluation metrics which cover the common use-cases of these algorithms. In contrast to prior studies, we find that under strict control, differences between algorithms are smaller than previously assumed. Our findings can guide users to choose the appropriate algorithms for specific tasks, as well as stimulate new research in improved algorithms.
Author Information
Austin Tripp (University of Cambridge)
Krzysztof Maziarz (Microsoft Research)
Sarah Lewis (Microsoft Research)
Guoqing Liu (Microsoft Research AI4Science)
Marwin Segler (BenevolentAI)
More from the Same Authors
-
2021 : Accurate Imputation and Efficient Data Acquisitionwith Transformer-based VAEs »
Sarah Lewis · Tatiana Matejovicova · Yingzhen Li · Angus Lamb · Yordan Zaykov · Miltiadis Allamanis · Cheng Zhang -
2021 : A Fresh Look at De Novo Molecular Design Benchmarks »
Austin Tripp · Gregor Simm · José Miguel Hernández-Lobato -
2021 : Accurate Imputation and Efficient Data Acquisitionwith Transformer-based VAEs »
Sarah Lewis · Tatiana Matejovicova · Yingzhen Li · Angus Lamb · Yordan Zaykov · Miltiadis Allamanis · Cheng Zhang -
2022 : GAUCHE: A Library for Gaussian Processes in Chemistry »
Ryan-Rhys Griffiths · Leo Klarner · Henry Moss · Aditya Ravuri · Sang Truong · Bojana Rankovic · Yuanqi Du · Arian Jamasb · Julius Schwartz · Austin Tripp · Gregory Kell · Anthony Bourached · Alex Chan · Jacob Moss · Chengzhi Guo · Alpha Lee · Philippe Schwaller · Jian Tang -
2022 : Meta-learning Adaptive Deep Kernel Gaussian Processes for Molecular Property Prediction »
Wenlin Chen · Austin Tripp · José Miguel Hernández-Lobato -
2021 Workshop: Deep Generative Models and Downstream Applications »
José Miguel Hernández-Lobato · Yingzhen Li · Yichuan Zhang · Cheng Zhang · Austin Tripp · Weiwei Pan · Oren Rippel -
2020 Workshop: Machine Learning for Molecules »
José Miguel Hernández-Lobato · Matt Kusner · Brooks Paige · Marwin Segler · Jennifer Wei -
2020 Poster: Sample-Efficient Optimization in the Latent Space of Deep Generative Models via Weighted Retraining »
Austin Tripp · Erik Daxberger · José Miguel Hernández-Lobato -
2020 Poster: Barking up the right tree: an approach to search over molecule synthesis DAGs »
John Bradshaw · Brooks Paige · Matt Kusner · Marwin Segler · José Miguel Hernández-Lobato -
2020 Spotlight: Barking up the right tree: an approach to search over molecule synthesis DAGs »
John Bradshaw · Brooks Paige · Matt Kusner · Marwin Segler · José Miguel Hernández-Lobato