Timezone: »
Studying animal movements is essential for effective wildlife conservation and conflict mitigation. For aerial movements, operational weather radars have become an indispensable data source in this respect. However, partial measurements, incomplete spatial coverage, and poor understanding of animal behaviours make it difficult to reconstruct complete spatio-temporal movement patterns from available radar data. We tackle this inverse problem by learning a mapping from high-dimensional radar measurements to low-dimensional latent representations using a convolutional encoder. Under the assumption that the latent system dynamics are well approximated by a locally linear Gaussian transition model, we perform efficient posterior estimation using the classical Kalman smoother. A convolutional decoder maps the inferred latent system states back to the physical space in which the known radar observation model can be applied, enabling fully unsupervised training. To encourage scientific consistency, we additionally introduce a physics-informed loss term that leverages known mass conservation constraints. Our experiments on synthetic radar data show promising results in terms of reconstruction quality and data-efficiency.
Author Information
Fiona Lippert (University of Amsterdam)
Patrick Forré (University of Amsterdam)
More from the Same Authors
-
2022 : Towards architectural optimization of equivariant neural networks over subgroups »
Kaitlin Maile · Dennis Wilson · Patrick Forré -
2023 Poster: Clifford Group Equivariant Neural Networks »
David Ruhe · Johannes Brandstetter · Patrick Forré -
2023 Poster: Deep Gaussian Markov Random Fields for Graph-Structured Dynamical Systems »
Fiona Lippert · Bart Kranstauber · Emiel van Loon · Patrick Forré -
2023 Oral: Clifford Group Equivariant Neural Networks »
David Ruhe · Johannes Brandstetter · Patrick Forré -
2022 Poster: Contrastive Neural Ratio Estimation »
Benjamin K Miller · Christoph Weniger · Patrick Forré