Timezone: »

Pre-training via Denoising for Molecular Property Prediction
Sheheryar Zaidi · Michael Schaarschmidt · James Martens · Hyunjik Kim · Yee Whye Teh · Alvaro Sanchez Gonzalez · Peter Battaglia · Razvan Pascanu · Jonathan Godwin
Event URL: https://openreview.net/forum?id=YDXRqKLvfvz »

Many important problems involving molecular property prediction from 3D structures have limited data, posing a generalization challenge for neural networks. In this paper, we describe a pre-training technique based on denoising that achieves a new state-of-the-art in molecular property prediction by utilizing large datasets of 3D molecular structures at equilibrium to learn meaningful representations for downstream tasks. Relying on the well-known link between denoising autoencoders and score-matching, we show that the denoising objective corresponds to learning a molecular force field -- arising from approximating the Boltzmann distribution with a mixture of Gaussians -- directly from equilibrium structures. Our experiments demonstrate that using this pre-training objective significantly improves performance on multiple benchmarks, achieving a new state-of-the-art on the majority of targets in the widely used QM9 dataset. Our analysis then provides practical insights into the effects of different factors -- dataset sizes, model size and architecture, and the choice of upstream/downstream datasets -- on pre-training.

Author Information

Sheheryar Zaidi (University of Oxford)
Michael Schaarschmidt (Isomorphic Labs)
James Martens (DeepMind)
Hyunjik Kim (DeepMind)
Yee Whye Teh (University of Oxford, DeepMind)

I am a Professor of Statistical Machine Learning at the Department of Statistics, University of Oxford and a Research Scientist at DeepMind. I am also an Alan Turing Institute Fellow and a European Research Council Consolidator Fellow. I obtained my Ph.D. at the University of Toronto (working with Geoffrey Hinton), and did postdoctoral work at the University of California at Berkeley (with Michael Jordan) and National University of Singapore (as Lee Kuan Yew Postdoctoral Fellow). I was a Lecturer then a Reader at the Gatsby Computational Neuroscience Unit, UCL, and a tutorial fellow at University College Oxford, prior to my current appointment. I am interested in the statistical and computational foundations of intelligence, and works on scalable machine learning, probabilistic models, Bayesian nonparametrics and deep learning. I was programme co-chair of ICML 2017 and AISTATS 2010.

Alvaro Sanchez Gonzalez (DeepMind)
Peter Battaglia (DeepMind)
Razvan Pascanu (Google DeepMind)
Jonathan Godwin (DeepMind)

More from the Same Authors