Timezone: »
The gradient descent (GD) method has been used widely to solve parameter estimation in generalized linear models (GLMs), a generalization of linear models when the link function can be non-linear. While GD has optimal statistical and computational complexities for estimating the true parameter under the high signal-to-noise ratio (SNR) regime of the GLMs, it has sub-optimal complexities when the SNR is low, namely, the iterates of GD require polynomial number of iterations to reach the final statistical radius. The slow convergence of GD for the low SNR case is mainly due to the local convexity of the least-square loss functions of the GLMs. To address the shortcomings of GD, we propose to use the BFGS quasi-Newton method to solve parameter estimation of the GLMs. On the optimization side, when the SNR is low, we demonstrate that iterates of BFGS converge linearly to the optimal solution of the population least-square loss function. On the statistical side, we prove that the iterates of BFGS reach the final statistical radius of the low SNR GLMs after a logarithmic number of iterations, which is much lower than the polynomial number of iterations of GD. We also present numerical experiments that match our theoretical findings.
Author Information
Qiujiang Jin (University of Texas, Austin)
Aryan Mokhtari (UT Austin)
Nhat Ho (University of Texas at Austin)
Tongzheng Ren (UT Austin)
More from the Same Authors
-
2022 : Conditional gradient-based method for bilevel optimization with convex lower-level problem »
Ruichen Jiang · Nazanin Abolfazli · Aryan Mokhtari · Erfan Yazdandoost Hamedani -
2022 Poster: Amortized Projection Optimization for Sliced Wasserstein Generative Models »
Khai Nguyen · Nhat Ho -
2022 Poster: Revisiting Sliced Wasserstein on Images: From Vectorization to Convolution »
Khai Nguyen · Nhat Ho -
2022 Poster: Stochastic Multiple Target Sampling Gradient Descent »
Hoang Phan · Ngoc Tran · Trung Le · Toan Tran · Nhat Ho · Dinh Phung -
2022 Poster: Beyond black box densities: Parameter learning for the deviated components »
Dat Do · Nhat Ho · XuanLong Nguyen -
2022 Poster: FedAvg with Fine Tuning: Local Updates Lead to Representation Learning »
Liam Collins · Hamed Hassani · Aryan Mokhtari · Sanjay Shakkottai -
2022 Poster: FourierFormer: Transformer Meets Generalized Fourier Integral Theorem »
Tan Nguyen · Minh Pham · Tam Nguyen · Khai Nguyen · Stanley Osher · Nhat Ho -
2022 Poster: Improving Transformer with an Admixture of Attention Heads »
Tan Nguyen · Tam Nguyen · Hai Do · Khai Nguyen · Vishwanath Saragadam · Minh Pham · Khuong Duy Nguyen · Nhat Ho · Stanley Osher -
2021 Poster: Structured Dropout Variational Inference for Bayesian Neural Networks »
Son Nguyen · Duong Nguyen · Khai Nguyen · Khoat Than · Hung Bui · Nhat Ho -
2021 Poster: On Robust Optimal Transport: Computational Complexity and Barycenter Computation »
Khang Le · Huy Nguyen · Quang M Nguyen · Tung Pham · Hung Bui · Nhat Ho -
2021 Poster: Exploiting Local Convergence of Quasi-Newton Methods Globally: Adaptive Sample Size Approach »
Qiujiang Jin · Aryan Mokhtari -
2021 Poster: Generalization of Model-Agnostic Meta-Learning Algorithms: Recurring and Unseen Tasks »
Alireza Fallah · Aryan Mokhtari · Asuman Ozdaglar -
2021 Poster: On the Convergence Theory of Debiased Model-Agnostic Meta-Reinforcement Learning »
Alireza Fallah · Kristian Georgiev · Aryan Mokhtari · Asuman Ozdaglar -
2020 Poster: Projection Robust Wasserstein Distance and Riemannian Optimization »
Tianyi Lin · Chenyou Fan · Nhat Ho · Marco Cuturi · Michael Jordan -
2020 Poster: Fixed-Support Wasserstein Barycenters: Computational Hardness and Fast Algorithm »
Tianyi Lin · Nhat Ho · Xi Chen · Marco Cuturi · Michael Jordan -
2020 Spotlight: Projection Robust Wasserstein Distance and Riemannian Optimization »
Tianyi Lin · Chenyou Fan · Nhat Ho · Marco Cuturi · Michael Jordan -
2020 Poster: Task-Robust Model-Agnostic Meta-Learning »
Liam Collins · Aryan Mokhtari · Sanjay Shakkottai -
2020 Poster: Second Order Optimality in Decentralized Non-Convex Optimization via Perturbed Gradient Tracking »
Isidoros Tziotis · Constantine Caramanis · Aryan Mokhtari -
2020 Poster: Personalized Federated Learning with Theoretical Guarantees: A Model-Agnostic Meta-Learning Approach »
Alireza Fallah · Aryan Mokhtari · Asuman Ozdaglar -
2020 Poster: Submodular Meta-Learning »
Arman Adibi · Aryan Mokhtari · Hamed Hassani -
2019 : Invited talk: Aryan Mokhtari (UT Austin) »
Aryan Mokhtari -
2019 Poster: Stochastic Continuous Greedy ++: When Upper and Lower Bounds Match »
Amin Karbasi · Hamed Hassani · Aryan Mokhtari · Zebang Shen -
2019 Poster: Robust and Communication-Efficient Collaborative Learning »
Amirhossein Reisizadeh · Hossein Taheri · Aryan Mokhtari · Hamed Hassani · Ramtin Pedarsani -
2018 Poster: Direct Runge-Kutta Discretization Achieves Acceleration »
Jingzhao Zhang · Aryan Mokhtari · Suvrit Sra · Ali Jadbabaie -
2018 Spotlight: Direct Runge-Kutta Discretization Achieves Acceleration »
Jingzhao Zhang · Aryan Mokhtari · Suvrit Sra · Ali Jadbabaie -
2018 Poster: Escaping Saddle Points in Constrained Optimization »
Aryan Mokhtari · Asuman Ozdaglar · Ali Jadbabaie -
2018 Spotlight: Escaping Saddle Points in Constrained Optimization »
Aryan Mokhtari · Asuman Ozdaglar · Ali Jadbabaie