Timezone: »
The availability of reliable, high-resolution climate and weather data is important to inform long-term decisions on climate adaptation and mitigation and to guide rapid responses to extreme events. Forecasting models are limited by computational costs and therefore often predict quantities at a coarse spatial resolution. Statistical downscaling can provide an efficient method of upsampling low-resolution data. In this field, deep learning has been applied successfully, often using methods from the super-resolution domain in computer vision. Despite often achieving visually compelling results, such models often violate conservation laws when predicting physical variables. In order to conserve important physical quantities, we develop methods that guarantee physical constraints are satisfied by a deep downscaling model while also increasing their performance according to traditional metrics. We introduce two ways of constraining the network: A renormalization layer added to the end of the neural network and a successive approach that scales with increasing upsampling factors. We show the applicability of our methods across different popular architectures and upsampling factors using ERA5 reanalysis data.
Author Information
Paula Harder (Fraunhofer ITWM)
Qidong Yang (New York University)
Venkatesh Ramesh (Mila)
Prasanna Sattigeri (IBM Research)
Alex Hernandez-Garcia (Mila - Quebec AI Institute)
Campbell Watson (IBM Research)
I'm an atmospheric scientist at IBM Research where my research spans climate, weather and water. I was a postdoc at Yale University with Prof. Ron Smith, and completed a PhD at the University of Melbourne with Prof. Todd Lane. Currently leading AI for Climate initiatives with the Future of Climate at IBM Research.
Daniela Szwarcman (IBM-Research Brazil)
David Rolnick (McGill / Mila)
More from the Same Authors
-
2020 : NightVision: Generating Nighttime Satellite Imagery from Infra-Red Observations »
Paula Harder -
2020 : Investigating two super-resolution methods for downscaling precipitation: ESRGAN and CAR »
Campbell Watson -
2021 Spotlight: Techniques for Symbol Grounding with SATNet »
Sever Topan · David Rolnick · Xujie Si -
2021 : ClimART: A Benchmark Dataset for Emulating Atmospheric Radiative Transfer in Weather and Climate Models »
Salva Rühling Cachay · Venkatesh Ramesh · Jason Cole · Howard Barker · David Rolnick -
2021 : Single Image Super-Resolution with Uncertainty Estimation for Lunar Satellite Images »
Jose Delgado-Centeno · Paula Harder · Ben Moseley · Valentin Bickel · Siddha Ganju · Miguel Olivares · Alfredo Kalaitzis -
2021 : Addressing Deep Learning Model Uncertainty in Long-Range Climate Forecasting with Late Fusion »
Ken C. L. Wong · Hongzhi Wang · Etienne Vos · Bianca Zadrozny · Campbell Watson · Tanveer Syeda-Mahmood -
2021 : Single Image Super-Resolution with Uncertainty Estimation for Lunar Satellite Images »
Jose Delgado-Centeno · Paula Harder · Ben Moseley · Valentin Bickel · Siddha Ganju · Miguel Olivares · Freddie Kalaitzis -
2021 : Single Image Super-Resolution with Uncertainty Estimation for Lunar Satellite Images »
Jose Delgado-Centeno · Paula Harder · Ben Moseley · Valentin Bickel · Siddha Ganju · Miguel Olivares · Alfredo Kalaitzis -
2021 : ClimART: A Benchmark Dataset for Emulating Atmospheric Radiative Transfer in Weather and Climate Models »
Salva Rühling Cachay · Venkatesh Ramesh · Jason N. S. Cole · Howard Barker · David Rolnick -
2021 : Detecting Abandoned Oil Wells Using Machine Learning and Semantic Segmentation »
Michelle Lin · David Rolnick -
2022 : Controllable Generation for Climate Modeling »
Moulik Choraria · Daniela Szwarcman · Bianca Zadrozny · Campbell Watson · Lav Varshney -
2022 : Generating physically-consistent high-resolution climate data with hard-constrained neural networks »
Paula Harder · Qidong Yang · Venkatesh Ramesh · Prasanna Sattigeri · Alex Hernandez-Garcia · Campbell Watson · Daniela Szwarcman · David Rolnick -
2022 : FIRO: A Deep-neural Network for Wildfire Forecast with Interpretable Hidden States »
Eduardo Rodrigues · Campbell Watson · Bianca Zadrozny · Gabrielle Nyirjesy -
2022 : Aboveground carbon biomass estimate with Physics-informed deep network »
Juan Nathaniel · · Campbell Watson · Gabrielle Nyirjesy · Conrad Albrecht -
2022 : Identifying causes of Pyrocumulonimbus (PyroCb) »
Emiliano Diaz · Kenza Tazi · Ashwin Braude · Daniel Okoh · Kara Lamb · Duncan Watson-Parris · Paula Harder · Nis Meinert -
2022 : Multi-Objective GFlowNets »
Moksh Jain · Sharath Chandra Raparthy · Alex Hernandez-Garcia · Jarrid Rector-Brooks · Yoshua Bengio · Santiago Miret · Emmanuel Bengio -
2022 : PhAST: Physics-Aware, Scalable, and Task-specific GNNs for accelerated catalyst design »
ALEXANDRE DUVAL · Victor Schmidt · Alex Hernandez-Garcia · Santiago Miret · Yoshua Bengio · David Rolnick -
2022 : Direct Sampling for extreme weather generation »
Jorge Luis Guevara Diaz · Bianca Zadrozny · Campbell Watson · Daniela Szwarcman · Debora Lima · Dilermando Queiroz · Leonardo Tizzei · Maria Garcia · Maysa Macedo · Priscilla Avegliano -
2023 Poster: Normalization Layers Are All That Sharpness-Aware Minimization Needs »
Maximilian Mueller · Tiffany Vlaar · David Rolnick · Matthias Hein -
2023 Poster: Effective Human-AI Teams via Learned Natural Language Rules and Onboarding »
Hussein Mozannar · Jimin Lee · Dennis Wei · Prasanna Sattigeri · Subhro Das · David Sontag -
2023 Poster: Equivariant Few-Shot Learning from Pretrained Models »
Sourya Basu · Pulkit Katdare · Prasanna Sattigeri · Vijil Chenthamarakshan · Katherine Driggs-Campbell · Payel Das · Lav Varshney -
2022 : FIRO: A Deep-neural Network for Wildfire Forecast with Interpretable Hidden States »
Eduardo Rodrigues · Campbell Watson · Bianca Zadrozny · Gabrielle Nyirjesy -
2022 : Contributed talk - (Paula Harder) - "Physics-Constrained Deep Learning for Climate Downscaling" »
Paula Harder -
2022 Poster: Understanding the Evolution of Linear Regions in Deep Reinforcement Learning »
Setareh Cohan · Nam Hee Kim · David Rolnick · Michiel van de Panne -
2022 Poster: Fair Infinitesimal Jackknife: Mitigating the Influence of Biased Training Data Points Without Refitting »
Prasanna Sattigeri · Soumya Ghosh · Inkit Padhi · Pierre Dognin · Kush Varshney -
2022 Expo Talk Panel: Uncertainty quantification for fair and transparent AI-assisted decision-making »
Prasanna Sattigeri -
2021 : ClimART: A Benchmark Dataset for Emulating Atmospheric Radiative Transfer in Weather and Climate Models »
Salva Rühling Cachay · Venkatesh Ramesh · Jason N. S. Cole · Howard Barker · David Rolnick -
2021 : Detecting Abandoned Oil Wells Using Machine Learning and Semantic Segmentation »
Michelle Lin · David Rolnick -
2021 Workshop: The pre-registration workshop: an alternative publication model for machine learning research »
Samuel Albanie · João Henriques · Luca Bertinetto · Alex Hernandez-Garcia · Hazel Doughty · Gul Varol -
2021 Poster: Techniques for Symbol Grounding with SATNet »
Sever Topan · David Rolnick · Xujie Si -
2021 Poster: Scalable Intervention Target Estimation in Linear Models »
Burak Varici · Karthikeyan Shanmugam · Prasanna Sattigeri · Ali Tajer -
2020 Workshop: Tackling Climate Change with ML »
David Dao · Evan Sherwin · Priya Donti · Lauren Kuntz · Lynn Kaack · Yumna Yusuf · David Rolnick · Catherine Nakalembe · Claire Monteleoni · Yoshua Bengio -
2020 Poster: Optimizing Mode Connectivity via Neuron Alignment »
Norman J Tatro · Pin-Yu Chen · Payel Das · Igor Melnyk · Prasanna Sattigeri · Rongjie Lai -
2019 : Coffee Break and Poster Session »
Rameswar Panda · Prasanna Sattigeri · Kush Varshney · Karthikeyan Natesan Ramamurthy · Harvineet Singh · Vishwali Mhasawade · Shalmali Joshi · Laleh Seyyed-Kalantari · Matthew McDermott · Gal Yona · James Atwood · Hansa Srinivasan · Yonatan Halpern · D. Sculley · Behrouz Babaki · Margarida Carvalho · Josie Williams · Narges Razavian · Haoran Zhang · Amy Lu · Irene Y Chen · Xiaojie Mao · Angela Zhou · Nathan Kallus -
2019 Poster: Learning New Tricks From Old Dogs: Multi-Source Transfer Learning From Pre-Trained Networks »
Joshua Lee · Prasanna Sattigeri · Gregory Wornell -
2018 Demonstration: PatentAI: IP Infringement Detection with Enhanced Paraphrase Identification »
Youssef Drissi · Karthikeyan Natesan Ramamurthy · Prasanna Sattigeri -
2018 Poster: Co-regularized Alignment for Unsupervised Domain Adaptation »
Abhishek Kumar · Prasanna Sattigeri · Kahini Wadhawan · Leonid Karlinsky · Rogerio Feris · Bill Freeman · Gregory Wornell -
2017 Poster: Semi-supervised Learning with GANs: Manifold Invariance with Improved Inference »
Abhishek Kumar · Prasanna Sattigeri · Tom Fletcher