Timezone: »
As one of the most popular machine learning models today, graph neural networks (GNNs) have attracted intense interest recently, and so does their explainability. Users are increasingly interested in a better understanding of GNN models and their outcomes. Unfortunately, today's evaluation frameworks for GNN explainability often rely on few inadequate synthetic datasets, leading to conclusions of limited scope due to a lack of complexity in the problem instances. As GNN models are deployed to more mission-critical applications, we are in dire need for a common evaluation protocol of explainability methods of GNNs. In this paper, we propose, to our best knowledge, the first systematic evaluation framework for GNN explainability, considering explainability on three different "user needs". We propose a unique metric that combines the fidelity measures and classify explanations based on their quality of being sufficient or necessary. We scope ourselves to node classification tasks and compare the most representative techniques in the field of input-level explainability for GNNs. For the inadequate but widely used synthetic benchmarks, surprisingly shallow techniques such as personalized PageRank have the best performance for a minimum computation time. But when the graph structure is more complex and nodes have meaningful features, gradient-based methods are the best according to our evaluation criteria. However, none dominates the others on all evaluation dimensions and there is always a trade-off. We further apply our evaluation protocol in a case study for frauds explanation on eBay transaction graphs to reflect the production environment.
Author Information
Kenza Amara (ETH Zurich)

I am an ETH AI Center Doctoral Fellow. My research interest is on Explainability for Graph Neural Networks, and its use for health, atmospheric and climate models, banks, and the e-commerce. I am particularly interested in the fundamental ideas of deep learning on graphs, neural network interpretability, network analysis as well as graph theory and reinforcement learning applications in environmental sciences and social networks. I am part of the DS3Lab (Institute for Computing Platforms - Systems Group) led by Prof. Ce Zhang, the Social Networks Lab led by Prof. Ulrik Brandes and the IAC (Institute for Atmospheric and Climate Science) led by Prof. Sebastian Schemm. Prior to my PhD, I studied at École polytechnique, majoring in computer science and mathematics. I also hold a Master’s degree from ETH Zürich in environmental sciences and policy.
Rex Ying (Yale University)
Ce Zhang (ETH Zurich)
More from the Same Authors
-
2021 : Evaluating Bayes Error Estimators on Real-World Datasets with FeeBee »
Cedric Renggli · Luka Rimanic · Nora Hollenstein · Ce Zhang -
2022 Poster: VF-PS: How to Select Important Participants in Vertical Federated Learning, Efficiently and Securely? »
Jiawei Jiang · Lukas Burkhalter · Fangcheng Fu · Bolin Ding · Bo Du · Anwar Hithnawi · Bo Li · Ce Zhang -
2022 : Learning Efficient Hybrid Particle-continuum Representations of Non-equilibrium N-body Systems »
Tailin Wu · Michael Sun · Hsuan-Gu Chou · Pranay Reddy Samala · Sithipont Cholsaipant · Sophia Kivelson · Jacqueline Yau · Rex Ying · E. Paulo Alves · Jure Leskovec · Frederico Fiuza -
2022 : Improving Vertical Federated Learning by Efficient Communication with ADMM »
Chulin Xie · Pin-Yu Chen · Ce Zhang · Bo Li -
2022 : How Powerful is Implicit Denoising in Graph Neural Networks »
Songtao Liu · Rex Ying · Hanze Dong · Lu Lin · Jinghui Chen · Dinghao Wu -
2022 : Efficient Automatic Machine Learning via Design Graphs »
Shirley Wu · Jiaxuan You · Jure Leskovec · Rex Ying -
2022 : GraphFramEx: Towards Systematic Evaluation of Explainability Methods for Graph Neural Networks »
Kenza Amara · Rex Ying · Zitao Zhang · Zhihao Han · Yinan Shan · Ulrik Brandes · Sebastian Schemm -
2022 Spotlight: Certifying Some Distributional Fairness with Subpopulation Decomposition »
Mintong Kang · Linyi Li · Maurice Weber · Yang Liu · Ce Zhang · Bo Li -
2022 Spotlight: Lightning Talks 1A-3 »
Kimia Noorbakhsh · Ronan Perry · Qi Lyu · Jiawei Jiang · Christian Toth · Olivier Jeunen · Xin Liu · Yuan Cheng · Lei Li · Manuel Rodriguez · Julius von Kügelgen · Lars Lorch · Nicolas Donati · Lukas Burkhalter · Xiao Fu · Zhongdao Wang · Songtao Feng · Ciarán Gilligan-Lee · Rishabh Mehrotra · Fangcheng Fu · Jing Yang · Bernhard Schölkopf · Ya-Li Li · Christian Knoll · Maks Ovsjanikov · Andreas Krause · Shengjin Wang · Hong Zhang · Mounia Lalmas · Bolin Ding · Bo Du · Yingbin Liang · Franz Pernkopf · Robert Peharz · Anwar Hithnawi · Julius von Kügelgen · Bo Li · Ce Zhang -
2022 Spotlight: VF-PS: How to Select Important Participants in Vertical Federated Learning, Efficiently and Securely? »
Jiawei Jiang · Lukas Burkhalter · Fangcheng Fu · Bolin Ding · Bo Du · Anwar Hithnawi · Bo Li · Ce Zhang -
2022 Workshop: New Frontiers in Graph Learning »
Jiaxuan You · Marinka Zitnik · Rex Ying · Yizhou Sun · Hanjun Dai · Stefanie Jegelka -
2022 Poster: Improving Certified Robustness via Statistical Learning with Logical Reasoning »
Zhuolin Yang · Zhikuan Zhao · Boxin Wang · Jiawei Zhang · Linyi Li · Hengzhi Pei · Bojan Karlaš · Ji Liu · Heng Guo · Ce Zhang · Bo Li -
2022 Poster: Certifying Some Distributional Fairness with Subpopulation Decomposition »
Mintong Kang · Linyi Li · Maurice Weber · Yang Liu · Ce Zhang · Bo Li -
2022 Poster: Decentralized Training of Foundation Models in Heterogeneous Environments »
Binhang Yuan · Yongjun He · Jared Davis · Tianyi Zhang · Tri Dao · Beidi Chen · Percy Liang · Christopher Ré · Ce Zhang -
2022 Poster: Fine-tuning Language Models over Slow Networks using Activation Quantization with Guarantees »
Jue WANG · Binhang Yuan · Luka Rimanic · Yongjun He · Tri Dao · Beidi Chen · Christopher Ré · Ce Zhang -
2022 : Invited Talk »
Rex Ying -
2021 Poster: TRS: Transferability Reduced Ensemble via Promoting Gradient Diversity and Model Smoothness »
Zhuolin Yang · Linyi Li · Xiaojun Xu · Shiliang Zuo · Qian Chen · Pan Zhou · Benjamin Rubinstein · Ce Zhang · Bo Li -
2020 Poster: Spectral Temporal Graph Neural Network for Multivariate Time-series Forecasting »
Defu Cao · Yujing Wang · Juanyong Duan · Ce Zhang · Xia Zhu · Congrui Huang · Yunhai Tong · Bixiong Xu · Jing Bai · Jie Tong · Qi Zhang -
2020 Spotlight: Spectral Temporal Graph Neural Network for Multivariate Time-series Forecasting »
Defu Cao · Yujing Wang · Juanyong Duan · Ce Zhang · Xia Zhu · Congrui Huang · Yunhai Tong · Bixiong Xu · Jing Bai · Jie Tong · Qi Zhang -
2020 Poster: Learning to Mutate with Hypergradient Guided Population »
Zhiqiang Tao · Yaliang Li · Bolin Ding · Ce Zhang · Jingren Zhou · Yun Fu -
2020 Poster: On Convergence of Nearest Neighbor Classifiers over Feature Transformations »
Luka Rimanic · Cedric Renggli · Bo Li · Ce Zhang -
2018 Poster: Communication Compression for Decentralized Training »
Hanlin Tang · Shaoduo Gan · Ce Zhang · Tong Zhang · Ji Liu -
2017 Poster: Can Decentralized Algorithms Outperform Centralized Algorithms? A Case Study for Decentralized Parallel Stochastic Gradient Descent »
Xiangru Lian · Ce Zhang · Huan Zhang · Cho-Jui Hsieh · Wei Zhang · Ji Liu -
2017 Oral: Can Decentralized Algorithms Outperform Centralized Algorithms? A Case Study for Decentralized Parallel Stochastic Gradient Descent »
Xiangru Lian · Ce Zhang · Huan Zhang · Cho-Jui Hsieh · Wei Zhang · Ji Liu