Timezone: »
When are Local Queries Useful for Robust Learning?
Pascale Gourdeau · Varun Kanade · Marta Kwiatkowska · James Worrell
Distributional assumptions have been shown to be necessary for the robust learnability of concept classes when considering exact-in-the-ball robust risk and access to random examples by Gourdeau et al. (2019). In this paper, we study learning models where the learner is given more power through the use of \emph{local} queries and give the first \emph{distribution-free} algorithms that perform robust empirical risk minimization (ERM) for this notion of robustness. The first learning model we consider uses local membership queries (LMQ), where the learner can query the label of points near the training sample. We show that, under the uniform distribution, LMQs do not increase the robustness threshold of conjunctions and any superclass, e.g., decision lists and halfspaces. Faced with this negative result, we introduce the local \emph{equivalence} query oracle, which returns whether the hypothesis and target concept agree in the perturbation region around a point in the training sample, as well as a counterexample if it exists. We show a separation result: on one hand, if the query radius $\lambda$ is strictly smaller than the adversary's perturbation budget $\rho$, then distribution-free robust learning is impossible for a wide variety of concept classes; on the other hand, the setting $\lambda=\rho$ allows us to develop robust ERM algorithms. We then bound the query complexity of these algorithms based on online learning guarantees and further improve these bounds for the special case of conjunctions. We finish by giving robust learning algorithms for halfspaces with margins on both $\boolhc$ and $\mathbb{R}^n$.
Author Information
Pascale Gourdeau (University of Oxford)
Varun Kanade (University of Oxford)
Marta Kwiatkowska (University of Oxford)
James Worrell (University of Oxford)
More from the Same Authors
-
2021 Spotlight: Towards optimally abstaining from prediction with OOD test examples »
Adam Kalai · Varun Kanade -
2022 : Symbolic Causal Inference via Operations on Probabilistic Circuits »
Benjie Wang · Marta Kwiatkowska -
2022 Poster: When are Local Queries Useful for Robust Learning? »
Pascale Gourdeau · Varun Kanade · Marta Kwiatkowska · James Worrell -
2022 : Contributed talk (Pascale Gourdeau) - When are Local Queries Useful for Robust Learning? »
Pascale Gourdeau -
2021 : Research panel »
David Dunson · Marta Kwiatkowska · Steven MacEachern · Jeffrey Miller · Briana Joy Stephenson · Anirban Bhattacharya -
2021 Poster: Towards optimally abstaining from prediction with OOD test examples »
Adam Kalai · Varun Kanade -
2020 Poster: The Statistical Complexity of Early-Stopped Mirror Descent »
Tomas Vaskevicius · Varun Kanade · Patrick Rebeschini -
2020 Spotlight: The Statistical Complexity of Early-Stopped Mirror Descent »
Tomas Vaskevicius · Varun Kanade · Patrick Rebeschini -
2019 : Break / Poster Session 1 »
Antonia Marcu · Yao-Yuan Yang · Pascale Gourdeau · Chen Zhu · Thodoris Lykouris · Jianfeng Chi · Mark Kozdoba · Arjun Nitin Bhagoji · Xiaoxia Wu · Jay Nandy · Michael T Smith · Bingyang Wen · Yuege Xie · Konstantinos Pitas · Suprosanna Shit · Maksym Andriushchenko · Dingli Yu · Gaël Letarte · Misha Khodak · Hussein Mozannar · Chara Podimata · James Foulds · Yizhen Wang · Huishuai Zhang · Ondrej Kuzelka · Alexander Levine · Nan Lu · Zakaria Mhammedi · Paul Viallard · Diana Cai · Lovedeep Gondara · James Lucas · Yasaman Mahdaviyeh · Aristide Baratin · Rishi Bommasani · Alessandro Barp · Andrew Ilyas · Kaiwen Wu · Jens Behrmann · Omar Rivasplata · Amir Nazemi · Aditi Raghunathan · Will Stephenson · Sahil Singla · Akhil Gupta · YooJung Choi · Yannic Kilcher · Clare Lyle · Edoardo Manino · Andrew Bennett · Zhi Xu · Niladri Chatterji · Emre Barut · Flavien Prost · Rodrigo Toro Icarte · Arno Blaas · Chulhee Yun · Sahin Lale · YiDing Jiang · Tharun Kumar Reddy Medini · Ashkan Rezaei · Alexander Meinke · Stephen Mell · Gary Kazantsev · Shivam Garg · Aradhana Sinha · Vishnu Lokhande · Geovani Rizk · Han Zhao · Aditya Kumar Akash · Jikai Hou · Ali Ghodsi · Matthias Hein · Tyler Sypherd · Yichen Yang · Anastasia Pentina · Pierre Gillot · Antoine Ledent · Guy Gur-Ari · Noah MacAulay · Tianzong Zhang -
2019 Poster: On the Hardness of Robust Classification »
Pascale Gourdeau · Varun Kanade · Marta Kwiatkowska · James Worrell -
2019 Spotlight: On the Hardness of Robust Classification »
Pascale Gourdeau · Varun Kanade · Marta Kwiatkowska · James Worrell -
2018 : Safety verification for neural networks with provable guarantees by Marta Kwiatkowska »
Marta Kwiatkowska -
2018 Poster: Clustering Redemption–Beyond the Impossibility of Kleinberg’s Axioms »
Vincent Cohen-Addad · Varun Kanade · Frederik Mallmann-Trenn -
2017 Poster: Hierarchical Clustering Beyond the Worst-Case »
Vincent Cohen-Addad · Varun Kanade · Frederik Mallmann-Trenn -
2017 Poster: From which world is your graph »
Cheng Li · Felix MF Wong · Zhenming Liu · Varun Kanade